Bariatric surgery includes a variety of procedures that are performed on obese people and aim at decreasing the intake of food and calories. This goal is usually pursued by reducing stomach capacity and/or absorbing capability. Adjustable gastric banding is the most common and successful operation. In general, bariatric surgical procedures are effective, but are often associated with major complications.Surgical procedure and post-surgical conformation of the stomach are usually defined on clinical and surgical basis only. Instead, the optimal configuration should be identified by analyzing the mechanical functionality of the stomach and the surrounding structures, and the relationship between food intake, nutrient adsorption, mechanical stimulation of stomach wall and feeling of satiety.A novel approach to bariatric surgery is required, integrating competences in the areas of biomechanics, physiology and surgery, based on a strong interaction between engineers and clinicians. Preliminary results from coupled experimental and computational investigations are here reported. The analyses aim to develop computational tools for the investigation of stomach mechanical functionality in pre- and post-surgical conformations. (C) 2017 Elsevier Ltd. All rights reserved.

A biomechanical approach to the analysis of methods and procedures of bariatric surgery

CARNIEL, EMANUELE LUIGI;FRIGO, ALESSANDRO;FONTANELLA, CHIARA GIULIA;DE BENEDICTIS, GIULIA MARIA;RUBINI, ALESSANDRO;POLESE, LINO
2017

Abstract

Bariatric surgery includes a variety of procedures that are performed on obese people and aim at decreasing the intake of food and calories. This goal is usually pursued by reducing stomach capacity and/or absorbing capability. Adjustable gastric banding is the most common and successful operation. In general, bariatric surgical procedures are effective, but are often associated with major complications.Surgical procedure and post-surgical conformation of the stomach are usually defined on clinical and surgical basis only. Instead, the optimal configuration should be identified by analyzing the mechanical functionality of the stomach and the surrounding structures, and the relationship between food intake, nutrient adsorption, mechanical stimulation of stomach wall and feeling of satiety.A novel approach to bariatric surgery is required, integrating competences in the areas of biomechanics, physiology and surgery, based on a strong interaction between engineers and clinicians. Preliminary results from coupled experimental and computational investigations are here reported. The analyses aim to develop computational tools for the investigation of stomach mechanical functionality in pre- and post-surgical conformations. (C) 2017 Elsevier Ltd. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3223371
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 26
social impact