This article investigates the flow boiling heat transfer of the low global warming potential refrigerant R1234yf on a microparticle coated surface obtained via high-pressure cold spray, a simple and nonexpensive technique. The sample was obtained by depositing pure copper particles with average size of 20 μm obtaining a 0.1 mm thick coating on a smooth copper plate 10 mm wide and 200 mm long. The experimental measurements were carried out at constant saturation temperature of 30°C, by varying the heat flux from 50 to 100 kW m−2, the refrigerant mass flux from 30 to 200 kg m−2 s−1, and the vapor quality from 0.2 to 0.99. The coating was found to be hydrophilic, leading to hysteresis on the heat transfer behavior, which is discussed in detail. Furthermore, the experimental results are compared against similar measurements obtained during R1234yf flow boiling over a plain copper surface.

Flow boiling heat transfer of R1234yf on a microparticle coated copper surface

MANCIN, SIMONE;DIANI, ANDREA;VEZZU', SIMONE;ROSSETTO, LUISA
2016

Abstract

This article investigates the flow boiling heat transfer of the low global warming potential refrigerant R1234yf on a microparticle coated surface obtained via high-pressure cold spray, a simple and nonexpensive technique. The sample was obtained by depositing pure copper particles with average size of 20 μm obtaining a 0.1 mm thick coating on a smooth copper plate 10 mm wide and 200 mm long. The experimental measurements were carried out at constant saturation temperature of 30°C, by varying the heat flux from 50 to 100 kW m−2, the refrigerant mass flux from 30 to 200 kg m−2 s−1, and the vapor quality from 0.2 to 0.99. The coating was found to be hydrophilic, leading to hysteresis on the heat transfer behavior, which is discussed in detail. Furthermore, the experimental results are compared against similar measurements obtained during R1234yf flow boiling over a plain copper surface.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3232325
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact