The growing demand in the automotive industry for lighter vehicles has led to increasing use of Al-Si based alloys in the production of engine blocks. Low-pressure die casting (LPDC) is an enhanced process generally used for parts with premium requirements, therefore it is one of the most promising technologies for the production of engine blocks. This work is aimed to study the effects of Sr modification and holding pressure on the microstructure and casting defects of a low-pressure die cast A356 engine block. The microstructural scale, evaluated by secondary dendrite arm spacing, the amount of porosity and inclusions, and the morphology of eutectic Si particles were investigated by metallographic and image analysis. The results were correlated with the variation of input process variables such as holding pressure and Sr level. The measured amount of porosity is low, therefore confirming LPDC as a useful foundry process for the production of Al blocks for high performance engines.
Influence of process parameters on the microstructure and casting defects of a LPDC engine block
TIMELLI, GIULIO
Writing – Original Draft Preparation
;CALIARI, DANIELEFormal Analysis
2016
Abstract
The growing demand in the automotive industry for lighter vehicles has led to increasing use of Al-Si based alloys in the production of engine blocks. Low-pressure die casting (LPDC) is an enhanced process generally used for parts with premium requirements, therefore it is one of the most promising technologies for the production of engine blocks. This work is aimed to study the effects of Sr modification and holding pressure on the microstructure and casting defects of a low-pressure die cast A356 engine block. The microstructural scale, evaluated by secondary dendrite arm spacing, the amount of porosity and inclusions, and the morphology of eutectic Si particles were investigated by metallographic and image analysis. The results were correlated with the variation of input process variables such as holding pressure and Sr level. The measured amount of porosity is low, therefore confirming LPDC as a useful foundry process for the production of Al blocks for high performance engines.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.