This study tries to find out a better cooling and temperature homogenization as well as better die protection on high-pressure die-casting (HPDC) spray lubrication. Test procedures have been set up to study the Leidenfrost point (LFP), contact angle (CA), film thickness and protection from die soldering of lubricants typically applied into the die surfaces during HPDC process. Five different lubricants have been studied as well as the influence in different controllable process parameters (type of die material, oxidation of the surface, temperature, roughness, droplet diameter, water hardness and lubricant concentration). The increase of the LFP, avoiding film boiling regime, and a reduced CA, improve the cooling and film ability of die surface during spraying. The best chemistry exhibits high LFP, shows an increased thickness of the formed film and is more effective preventing the sticking of the aluminum part to the die surface. Thermogravimetric analysis shows better thermal properties for lubricants with anti-sticking performance. The study performed and the test protocols set up result in a better insight of the involved phenomena and allow selecting the most favorable operating window for HPDC lubrication.

Evaluation HPDC Lubricant Spraying for Improved Cooling and Die Protection

TIMELLI, GIULIO;BONOLLO, FRANCO;
2016

Abstract

This study tries to find out a better cooling and temperature homogenization as well as better die protection on high-pressure die-casting (HPDC) spray lubrication. Test procedures have been set up to study the Leidenfrost point (LFP), contact angle (CA), film thickness and protection from die soldering of lubricants typically applied into the die surfaces during HPDC process. Five different lubricants have been studied as well as the influence in different controllable process parameters (type of die material, oxidation of the surface, temperature, roughness, droplet diameter, water hardness and lubricant concentration). The increase of the LFP, avoiding film boiling regime, and a reduced CA, improve the cooling and film ability of die surface during spraying. The best chemistry exhibits high LFP, shows an increased thickness of the formed film and is more effective preventing the sticking of the aluminum part to the die surface. Thermogravimetric analysis shows better thermal properties for lubricants with anti-sticking performance. The study performed and the test protocols set up result in a better insight of the involved phenomena and allow selecting the most favorable operating window for HPDC lubrication.
2016
LUBMAT 2016 Conference Proceedings
File in questo prodotto:
File Dimensione Formato  
PaperLUBMAT_Final.pdf

accesso aperto

Tipologia: Postprint (accepted version)
Licenza: Accesso gratuito
Dimensione 413.02 kB
Formato Adobe PDF
413.02 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3232467
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact