When looking for traces of past life on Mars, we have to look primarily for places where water was present, possibly for long time intervals. The Simud and Tiu Valles are two large outflow channels connected to the north with the Chryse Basin, Oxia Palus quadrangle. The area, carved by water during the Noachian/Early Hesperian is characterized by a complex geological evolution. The geomorphological analysis shows the presence of fluvial and alluvial structures, interpreted as fluvial channels and terraces, debris flow fronts and short-lasting small water flows coexisting with maar-diatremes and mud volcanoes. Several morphological features indicate a change in water flux direction after the main erosive phase. During this period water originated from the Masursky crater and flown southwards into the Hydraotes Chaos. This phenomenon caused the studied area to become a depocenter where fine-grained material deposition took place, possibly in association with ponding water. This setting is potentially quite valuable as traces of life may have been preserved. The presence of water at various times over a period of about 1 Ga in the area is corroborated by mineralogical analyses of different areas that indicate the possible presence of hydrated minerals mixtures, such as sulfate-bearing deposits. Given the uniqueness of the evolution of this region, the long term interactions between fluvial, volcanic, and tectonic processes and its extremely favorable landing parameters (elevation, slope, roughness, rock distribution, thermal inertia, albedo, etc.), we decided to propose this location as a possible landing site for the ESA ExoMars 2018, the NASA Mars 2020 and future on-site missions.

The Simud-Tiu Valles hydrologic system: A multidisciplinary study of a possible site for future Mars on-site exploration

PAJOLA, MAURIZIO;ROSSATO, SANDRO;
2016

Abstract

When looking for traces of past life on Mars, we have to look primarily for places where water was present, possibly for long time intervals. The Simud and Tiu Valles are two large outflow channels connected to the north with the Chryse Basin, Oxia Palus quadrangle. The area, carved by water during the Noachian/Early Hesperian is characterized by a complex geological evolution. The geomorphological analysis shows the presence of fluvial and alluvial structures, interpreted as fluvial channels and terraces, debris flow fronts and short-lasting small water flows coexisting with maar-diatremes and mud volcanoes. Several morphological features indicate a change in water flux direction after the main erosive phase. During this period water originated from the Masursky crater and flown southwards into the Hydraotes Chaos. This phenomenon caused the studied area to become a depocenter where fine-grained material deposition took place, possibly in association with ponding water. This setting is potentially quite valuable as traces of life may have been preserved. The presence of water at various times over a period of about 1 Ga in the area is corroborated by mineralogical analyses of different areas that indicate the possible presence of hydrated minerals mixtures, such as sulfate-bearing deposits. Given the uniqueness of the evolution of this region, the long term interactions between fluvial, volcanic, and tectonic processes and its extremely favorable landing parameters (elevation, slope, roughness, rock distribution, thermal inertia, albedo, etc.), we decided to propose this location as a possible landing site for the ESA ExoMars 2018, the NASA Mars 2020 and future on-site missions.
2016
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3233287
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 17
social impact