This review covers both fundamental aspects and applications of electrochemically mediated atom transfer radical polymerization (eATRP). eATRP setup is discussed in detail, together with the advantages and limitations of this technique. All relevant parameters that can influence eATRP outcome are evaluated (e.g. applied current and potential, stirring and diffusion, solvents and supporting electrolytes). Various materials prepared by eATRP are described, including homopolymers, block copolymers, star polymers, and surface grafted polymer brushes. In addition, other electrochemical techniques conceptually similar to eATRP are discussed, including copper-catalyzed azide-alkyne cycloaddition, electrochemical micropatterning, reversible addition-fragmentation chain transfer polymerization using redox-sensitive initiators, and catalyst removal by electrochemical reduction. The increasing research activity in the last decade indicates that electrochemically regulated methods are becoming valuable tools in the design and synthesis of advanced polymer materials.

Electrochemically mediated atom transfer radical polymerization (eATRP)

FANTIN, MARCO;AHMED ISSE, ABDIRISAK;GENNARO, ARMANDO;
2017

Abstract

This review covers both fundamental aspects and applications of electrochemically mediated atom transfer radical polymerization (eATRP). eATRP setup is discussed in detail, together with the advantages and limitations of this technique. All relevant parameters that can influence eATRP outcome are evaluated (e.g. applied current and potential, stirring and diffusion, solvents and supporting electrolytes). Various materials prepared by eATRP are described, including homopolymers, block copolymers, star polymers, and surface grafted polymer brushes. In addition, other electrochemical techniques conceptually similar to eATRP are discussed, including copper-catalyzed azide-alkyne cycloaddition, electrochemical micropatterning, reversible addition-fragmentation chain transfer polymerization using redox-sensitive initiators, and catalyst removal by electrochemical reduction. The increasing research activity in the last decade indicates that electrochemically regulated methods are becoming valuable tools in the design and synthesis of advanced polymer materials.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3234063
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 281
  • ???jsp.display-item.citation.isi??? 276
social impact