Part of the friction between two rough surfaces is due to the interlocking between asperities on opposite surfaces. In order for the surfaces to slide relative to each other, these interlocking asperities have to deform plastically. Here, we study the unit process of plastic ploughing of a single micrometer-scale asperity by means of two-dimensional dislocation dynamics simulations. Plastic deformation is described through the generation, motion, and annihilation of edge dislocations inside the asperity as well as in the subsurface. We find that the force required to plough an asperity at different ploughing depths follows a Gaussian distribution. For self-similar asperities, the friction stress is found to increase with the inverse of size. Comparison of the friction stress is made with other two contact models to show that interlocking asperities that are larger than ∼2 μm are easier to shear off plastically than asperities with a flat contact.

Plastic ploughing of a sinusoidal asperity on a rough surface

Nicola, L.;
2015

Abstract

Part of the friction between two rough surfaces is due to the interlocking between asperities on opposite surfaces. In order for the surfaces to slide relative to each other, these interlocking asperities have to deform plastically. Here, we study the unit process of plastic ploughing of a single micrometer-scale asperity by means of two-dimensional dislocation dynamics simulations. Plastic deformation is described through the generation, motion, and annihilation of edge dislocations inside the asperity as well as in the subsurface. We find that the force required to plough an asperity at different ploughing depths follows a Gaussian distribution. For self-similar asperities, the friction stress is found to increase with the inverse of size. Comparison of the friction stress is made with other two contact models to show that interlocking asperities that are larger than ∼2 μm are easier to shear off plastically than asperities with a flat contact.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3252995
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 15
social impact