Electrically Assisted Manufacturing (EAM) is a recently developed method for materials forming based on the Electro-Plastic Effect (EPE) induced by electric current on the flow properties of the material and enhancing their workability. In this technique, the concept of dislocations/electrons interaction and the localized resistive heating provided by electric current were found to be the main responsible for the observed increase in materials formability. However, the joule heating may hinder the induced EPE, since heat and electricity are contemporarily both present, and separation between these two contributions is mandatory to better understand the solely effect of electricity on plastic flow. The present experimental work on an AISI 316L austenitic stainless steel is aimed to study EPE by separating the effects of current from those of heating during EAM uniaxial tensile test, in order to ascribe the relative contributions.

Experimental Study on Electroplastic Effect in AISI 316L Austenitic Stainless Steel

Michieletto, Francesco
Methodology
;
Gennari, Claudio
Investigation
2015

Abstract

Electrically Assisted Manufacturing (EAM) is a recently developed method for materials forming based on the Electro-Plastic Effect (EPE) induced by electric current on the flow properties of the material and enhancing their workability. In this technique, the concept of dislocations/electrons interaction and the localized resistive heating provided by electric current were found to be the main responsible for the observed increase in materials formability. However, the joule heating may hinder the induced EPE, since heat and electricity are contemporarily both present, and separation between these two contributions is mandatory to better understand the solely effect of electricity on plastic flow. The present experimental work on an AISI 316L austenitic stainless steel is aimed to study EPE by separating the effects of current from those of heating during EAM uniaxial tensile test, in order to ascribe the relative contributions.
2015
APPLIED MECHANICS AND MATERIALS
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3270889
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact