The relationship of the estrous cycle to milk composition and milk physical properties was assessed on Holstein (n = 10,696), Brown Swiss (n = 20,501), Simmental (n = 17,837), and Alpine Grey (n = 8,595) cows reared in northeastern Italy. The first insemination after calving for each cow was chosen to be the day of estrus and insemination. Test days surrounding the insemination date (from 10 d before to 10 d after the day of the estrus) were selected and categorized in phases relative to estrus as diestrus high-progesterone, proestrus, estrus, metestrus, and diestrus increasing-progesterone phases. Milk components and physical properties were predicted on the basis of Fourier-transform infrared spectra of milk samples and were analyzed using a linear mixed model, which included the random effects of herd, the fixed classification effects of year-month, parity number, breed, estrous cycle phase, day nested within the estrous cycle phase, conception, partial regressions on linear and quadratic effects of days in milk nested within parity number, as well as the interactions between conception outcome with estrous cycle phase and breed with estrous cycle phase. Milk composition, particularly fat, protein, and lactose, showed clear differences among the estrous cycle phases. Fat increased by 0.14% from diestrus high-progesterone to estrous phase, whereas protein concomitantly decreased by 0.03%. Lactose appeared to remain relatively constant over diestrus high-progesterone, rising 1 d before the day of estrus followed by a gradual reduction over the subsequent phases. Specific fatty acids were also affected across the estrous cycle phases: C14:0 and C16:0 decreased (−0.34 and −0.48%) from proestrus to estrus with a concomitant increase in C18:0 and C18:1 cis-9 (0.40 and 0.73%). More general categories of fatty acids showed a similar behavior; that is, unsaturated fatty acids, monounsaturated fatty acids, polyunsaturated fatty acids, trans fatty acids, and long-chain fatty acids increased, whereas the saturated fatty acids, mediumchain fatty acids, and short-chain fatty acids decreased during the estrous phase. Finally, urea, somatic cell score, freezing point, pH, and homogenization index were also affected indicating variation associated with the hormonal and behavioral changes of cows in standing estrus. Hence, the variation in milk profiles of cows showing estrus should potentially be taken into account for precision dairy farming management.

Changes in milk characteristics and fatty acid profile during the estrous cycle in dairy cows

Gabai, Gianfranco
Membro del Collaboration Group
;
Cecchinato, Alessio
Membro del Collaboration Group
;
Bittante, Giovanni
Membro del Collaboration Group
2018

Abstract

The relationship of the estrous cycle to milk composition and milk physical properties was assessed on Holstein (n = 10,696), Brown Swiss (n = 20,501), Simmental (n = 17,837), and Alpine Grey (n = 8,595) cows reared in northeastern Italy. The first insemination after calving for each cow was chosen to be the day of estrus and insemination. Test days surrounding the insemination date (from 10 d before to 10 d after the day of the estrus) were selected and categorized in phases relative to estrus as diestrus high-progesterone, proestrus, estrus, metestrus, and diestrus increasing-progesterone phases. Milk components and physical properties were predicted on the basis of Fourier-transform infrared spectra of milk samples and were analyzed using a linear mixed model, which included the random effects of herd, the fixed classification effects of year-month, parity number, breed, estrous cycle phase, day nested within the estrous cycle phase, conception, partial regressions on linear and quadratic effects of days in milk nested within parity number, as well as the interactions between conception outcome with estrous cycle phase and breed with estrous cycle phase. Milk composition, particularly fat, protein, and lactose, showed clear differences among the estrous cycle phases. Fat increased by 0.14% from diestrus high-progesterone to estrous phase, whereas protein concomitantly decreased by 0.03%. Lactose appeared to remain relatively constant over diestrus high-progesterone, rising 1 d before the day of estrus followed by a gradual reduction over the subsequent phases. Specific fatty acids were also affected across the estrous cycle phases: C14:0 and C16:0 decreased (−0.34 and −0.48%) from proestrus to estrus with a concomitant increase in C18:0 and C18:1 cis-9 (0.40 and 0.73%). More general categories of fatty acids showed a similar behavior; that is, unsaturated fatty acids, monounsaturated fatty acids, polyunsaturated fatty acids, trans fatty acids, and long-chain fatty acids increased, whereas the saturated fatty acids, mediumchain fatty acids, and short-chain fatty acids decreased during the estrous phase. Finally, urea, somatic cell score, freezing point, pH, and homogenization index were also affected indicating variation associated with the hormonal and behavioral changes of cows in standing estrus. Hence, the variation in milk profiles of cows showing estrus should potentially be taken into account for precision dairy farming management.
File in questo prodotto:
File Dimensione Formato  
PIIS002203021830674X_vqr2.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 2.79 MB
Formato Adobe PDF
2.79 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3275161
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 24
social impact