Resveratrol (RES) is a polyphenolic compound found in grapes, peanuts, and in some berries. RES has been reported to exhibit antioxidant, anti-inflammatory, anti-proliferative properties, and to target mitochondrial-related pathways in mammalian cells and animal models. Therefore, RES is currently advised as supplement in the diet of elderly individuals. Although it is hypothesized that some of RES beneficial actions likely arise from its action on the skeletal muscle, the investigation of RES effects on this tissue remains still elusive. This study reports the effects of a 0,04% RES-supplemented diet for six months, on the skeletal muscle properties of C57/BL6 aging mice. The analysis of the morphology, protein expression, and functional-mechanical properties of selected skeletal muscles in treated compared to control mice, revealed that treated animals presented less tubular aggregates and a better resistance to fatigue in an ex-vivo contraction test, suggesting RES as a good candidate to reduce age-related alterations in muscle.

Resveratrol treatment reduces the appearance of tubular aggregates and improves the resistance to fatigue in aging mice skeletal muscles

Toniolo, Luana;Fusco, Pina;Canato, Marta;Reggiani, Carlo;
2018

Abstract

Resveratrol (RES) is a polyphenolic compound found in grapes, peanuts, and in some berries. RES has been reported to exhibit antioxidant, anti-inflammatory, anti-proliferative properties, and to target mitochondrial-related pathways in mammalian cells and animal models. Therefore, RES is currently advised as supplement in the diet of elderly individuals. Although it is hypothesized that some of RES beneficial actions likely arise from its action on the skeletal muscle, the investigation of RES effects on this tissue remains still elusive. This study reports the effects of a 0,04% RES-supplemented diet for six months, on the skeletal muscle properties of C57/BL6 aging mice. The analysis of the morphology, protein expression, and functional-mechanical properties of selected skeletal muscles in treated compared to control mice, revealed that treated animals presented less tubular aggregates and a better resistance to fatigue in an ex-vivo contraction test, suggesting RES as a good candidate to reduce age-related alterations in muscle.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3277639
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 20
social impact