The archaeometric study of the “golden slip” ware (second century BCE—fourth century CE) at the site of Barikot (Swat, north-western Pakistan) aimed to define its manufacturing technology and provenance of the raw materials used. For this reason, a multianalytical approach consisting of the microscopic, microstructural and mineralogical analysis of both the golden slip and the ceramic paste was adopted. The slip was found to be composed by platy minerals, microchemically identified as talc and chlorite; their intimate association indicated clearly that they derived from a chlorite-talc schist. This rock is geologically available near the site in the “green stones” lenses within the Mingora ophiolites outcropping in the Swat valley. Due to the use of this stone also for the production of stone tools, it cannot be excluded that the chlorite-talc schist used for the golden slip can be derived from manufacturing residues of the Gandharan sculptures. In order to constrain the firing production technology, laboratory replicas were produced using a locally collected clay and coating them with ground chlorite-talc schist. On the basis of the mineralogical association observed in both the slip and the ceramic paste and the thermodynamic stability of the pristine mineral phases, the golden slip pottery underwent firing under oxidising conditions in the temperature interval between 800°C and 850°C. The golden and shining looks of the slip were here interpreted as the result of the combined light reflectance of the platy structure of the talc-based coating and the uniform, bright red colour of the oxidized ceramic background.

Looking like gold: Chlorite and talc transformation in the golden slip ware production (Swat valley, North-Western Pakistan)

Maritan, Lara
Membro del Collaboration Group
;
Piovesan, Rebecca
Membro del Collaboration Group
;
Dalconi, Maria Chiara
Membro del Collaboration Group
;
Vidale, Massimo
Membro del Collaboration Group
;
Olivieri, Luca Maria
Membro del Collaboration Group
2018

Abstract

The archaeometric study of the “golden slip” ware (second century BCE—fourth century CE) at the site of Barikot (Swat, north-western Pakistan) aimed to define its manufacturing technology and provenance of the raw materials used. For this reason, a multianalytical approach consisting of the microscopic, microstructural and mineralogical analysis of both the golden slip and the ceramic paste was adopted. The slip was found to be composed by platy minerals, microchemically identified as talc and chlorite; their intimate association indicated clearly that they derived from a chlorite-talc schist. This rock is geologically available near the site in the “green stones” lenses within the Mingora ophiolites outcropping in the Swat valley. Due to the use of this stone also for the production of stone tools, it cannot be excluded that the chlorite-talc schist used for the golden slip can be derived from manufacturing residues of the Gandharan sculptures. In order to constrain the firing production technology, laboratory replicas were produced using a locally collected clay and coating them with ground chlorite-talc schist. On the basis of the mineralogical association observed in both the slip and the ceramic paste and the thermodynamic stability of the pristine mineral phases, the golden slip pottery underwent firing under oxidising conditions in the temperature interval between 800°C and 850°C. The golden and shining looks of the slip were here interpreted as the result of the combined light reflectance of the platy structure of the talc-based coating and the uniform, bright red colour of the oxidized ceramic background.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3278791
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 9
social impact