We calculate the transmission coefficient for a particle crossing a potential barrier in monolayer graphene with Rashba spin-orbit coupling and in bilayer graphene. We show that in both cases one can go from Klein tunneling regime, characterized by perfect normal transmission, to anti-Klein tunneling regime, with perfect normal reflection, by tuning the Rashba spin-orbit coupling for a monolayer or the interplane coupling for a bilayer graphene. We show that the intermediate regime is characterized by a non-monotonic behavior with oscillations and resonances in the normal transmission amplitude as a function of the coupling and of the potential parameters.

From Klein to anti-Klein tunneling in graphene tuning the Rashba spin-orbit interaction or the bilayer coupling

Dell'Anna, L
;
2018

Abstract

We calculate the transmission coefficient for a particle crossing a potential barrier in monolayer graphene with Rashba spin-orbit coupling and in bilayer graphene. We show that in both cases one can go from Klein tunneling regime, characterized by perfect normal transmission, to anti-Klein tunneling regime, with perfect normal reflection, by tuning the Rashba spin-orbit coupling for a monolayer or the interplane coupling for a bilayer graphene. We show that the intermediate regime is characterized by a non-monotonic behavior with oscillations and resonances in the normal transmission amplitude as a function of the coupling and of the potential parameters.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3279943
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact