With the purpose to study a solution based on Sustainable Urban Drainage Systems (SUDS) to reduce and treat stormwater runoff in urban areas, a bioretention pond (BP) was realized in the Agripolis campus of the University of Padova, Italy. The BP collected overflow water volumes of the rainwater drainage system of a 2270 m2 drainage area consisting almost entirely of impervious surfaces. Sixty-six Tech-IA® floating elements, supporting four plants each, were laid on the water surface. Eleven species of herbaceous perennial helophyte plants, with ornamental features, were used and tested. The early growth results of the BP functioning showed that nearly 50% of the total inflow water volume was stored or evapotranspirated, reducing the peak discharge on the urban drainage system. Among plants, Alisma parviflora, Caltha palustris, Iris ‘Black Gamecock’, Lysimachia punctata ‘Alexander’, Oenanthe javanica ‘Flamingo’, Mentha aquatica, Phalaris arundinacea ‘Picta’, and Typha laxmannii had the best survival and growth performances. A. parviflora and M. aquatica appeared interesting also for pollutant reduction in runoff water.

Assessing Stormwater Nutrient and Heavy Metal Plant Uptake in an Experimental Bioretention Pond

Zanin, Giampaolo;Bortolini, Lucia
;
Borin, Maurizio
2018

Abstract

With the purpose to study a solution based on Sustainable Urban Drainage Systems (SUDS) to reduce and treat stormwater runoff in urban areas, a bioretention pond (BP) was realized in the Agripolis campus of the University of Padova, Italy. The BP collected overflow water volumes of the rainwater drainage system of a 2270 m2 drainage area consisting almost entirely of impervious surfaces. Sixty-six Tech-IA® floating elements, supporting four plants each, were laid on the water surface. Eleven species of herbaceous perennial helophyte plants, with ornamental features, were used and tested. The early growth results of the BP functioning showed that nearly 50% of the total inflow water volume was stored or evapotranspirated, reducing the peak discharge on the urban drainage system. Among plants, Alisma parviflora, Caltha palustris, Iris ‘Black Gamecock’, Lysimachia punctata ‘Alexander’, Oenanthe javanica ‘Flamingo’, Mentha aquatica, Phalaris arundinacea ‘Picta’, and Typha laxmannii had the best survival and growth performances. A. parviflora and M. aquatica appeared interesting also for pollutant reduction in runoff water.
2018
File in questo prodotto:
File Dimensione Formato  
Assessing Stormwater Nutrient and Heavy Metal.pdf

accesso aperto

Tipologia: Altro materiale allegato
Licenza: Accesso libero
Dimensione 3.73 MB
Formato Adobe PDF
3.73 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3285177
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 17
social impact