The stunning diversity of neurons and glial cells makes possible the higher functions of the central nervous system (CNS), allowing the organism to sense, interpret and respond appropriately to the external environment. This cellular diversity derives from a single primary progenitor cell type initiating lineage leading to the formation of both differentiated neurons and glial cells. The processes governing the differentiation of the progenitor pool of cells into mature nerve cells will be here briefly reviewed. They involve morphological transformations, specialized modes of cell division, migration, and controlled cell death, and are regulated through cell-cell interactions and cues provided by the extracellular matrix, as well as by humoral factors from the cerebrospinal fluid and the blood system. In this respect, a quite large body of studies have been focused on cytokines, proteins representing the main signaling network that coordinates immune defense and the maintenance of homeostasis. At the same time, they are deeply involved in CNS development as regulatory factors. This dual role in the nervous system appears of particular relevance for CNS pathology, since cytokine dysregulation (occurring as a consequence of maternal infection, exposure to environmental factors or prenatal hypoxia) can profoundly impact on neurodevelopment and likely influence the response of the adult tissue during neuroinflammatory events.

Nerve cells developmental processes and the dynamic role of cytokine signaling

Guidolin, Diego
Writing – Original Draft Preparation
;
Fede, Caterina
Membro del Collaboration Group
;
Tortorella, Cinzia
Membro del Collaboration Group
2019

Abstract

The stunning diversity of neurons and glial cells makes possible the higher functions of the central nervous system (CNS), allowing the organism to sense, interpret and respond appropriately to the external environment. This cellular diversity derives from a single primary progenitor cell type initiating lineage leading to the formation of both differentiated neurons and glial cells. The processes governing the differentiation of the progenitor pool of cells into mature nerve cells will be here briefly reviewed. They involve morphological transformations, specialized modes of cell division, migration, and controlled cell death, and are regulated through cell-cell interactions and cues provided by the extracellular matrix, as well as by humoral factors from the cerebrospinal fluid and the blood system. In this respect, a quite large body of studies have been focused on cytokines, proteins representing the main signaling network that coordinates immune defense and the maintenance of homeostasis. At the same time, they are deeply involved in CNS development as regulatory factors. This dual role in the nervous system appears of particular relevance for CNS pathology, since cytokine dysregulation (occurring as a consequence of maternal infection, exposure to environmental factors or prenatal hypoxia) can profoundly impact on neurodevelopment and likely influence the response of the adult tissue during neuroinflammatory events.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3291050
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact