Purpose: In chronic lymphocytic leukemia (CLL), disease progression associates with surface IgM (sIgM) levels and signaling capacity. These are variably downmodulated in vivo and recover in vitro, suggesting a reversible influence of tissue-located antigen. Therapeutic targeting of sIgM function via ibrutinib, an inhibitor of Bruton tyrosine kinase (BTK), causes inhibition and tumor cell redistribution into the blood, with significant clinical benefit. Circulating CLL cells persist in an inhibited state, offering a tool to investigate the effects of drug on BTK-inhibited sIgM.Experimental Design: We investigated the consequences of ibrutinib therapy on levels and function of sIgM in circulating leukemic cells of patients with CLL.Results: At week 1, there was a significant increase of sIgM expression (64% increase from pretherapy) on CLL cells either recently released from tissue or persisting in blood. In contrast, surface IgD (sIgD) and a range of other receptors did not change. SIgM levels remained higher than pretherapy in the following 3 months despite gradual cell size reduction and ongoing autophagy and apoptotic activity. Conversely, IgD and other receptors did not increase and gradually declined. Recovered sIgM was fully N-glycosylated, another feature of escape from antigen, and expression did not increase further during culture in vitro The sIgM was fully capable of mediating phosphorylation of SYK, which lies upstream of BTK in the B-cell receptor pathway.Conclusions: This specific IgM increase in patients underpins the key role of tissue-based engagement with antigen in CLL, confirms the inhibitory action of ibrutinib, and reveals dynamic adaptability of CLL cells to precision monotherapy.

Ibrutinib Therapy Releases Leukemic Surface IgM from Antigen Drive in Chronic Lymphocytic Leukemia Patients

Trentin, Livio
Membro del Collaboration Group
;
2019

Abstract

Purpose: In chronic lymphocytic leukemia (CLL), disease progression associates with surface IgM (sIgM) levels and signaling capacity. These are variably downmodulated in vivo and recover in vitro, suggesting a reversible influence of tissue-located antigen. Therapeutic targeting of sIgM function via ibrutinib, an inhibitor of Bruton tyrosine kinase (BTK), causes inhibition and tumor cell redistribution into the blood, with significant clinical benefit. Circulating CLL cells persist in an inhibited state, offering a tool to investigate the effects of drug on BTK-inhibited sIgM.Experimental Design: We investigated the consequences of ibrutinib therapy on levels and function of sIgM in circulating leukemic cells of patients with CLL.Results: At week 1, there was a significant increase of sIgM expression (64% increase from pretherapy) on CLL cells either recently released from tissue or persisting in blood. In contrast, surface IgD (sIgD) and a range of other receptors did not change. SIgM levels remained higher than pretherapy in the following 3 months despite gradual cell size reduction and ongoing autophagy and apoptotic activity. Conversely, IgD and other receptors did not increase and gradually declined. Recovered sIgM was fully N-glycosylated, another feature of escape from antigen, and expression did not increase further during culture in vitro The sIgM was fully capable of mediating phosphorylation of SYK, which lies upstream of BTK in the B-cell receptor pathway.Conclusions: This specific IgM increase in patients underpins the key role of tissue-based engagement with antigen in CLL, confirms the inhibitory action of ibrutinib, and reveals dynamic adaptability of CLL cells to precision monotherapy.
File in questo prodotto:
File Dimensione Formato  
IBRTHER.pdf

accesso aperto

Tipologia: Postprint (accepted version)
Licenza: Accesso libero
Dimensione 766.24 kB
Formato Adobe PDF
766.24 kB Adobe PDF Visualizza/Apri
2503.pdf

solo utenti autorizzati

Tipologia: Published (publisher's version)
Licenza: Accesso privato - non pubblico
Dimensione 1.46 MB
Formato Adobe PDF
1.46 MB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3292543
Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 21
social impact