Riluzole, approved by the US Food and Drug Administration (FDA) in 1995, is the most widespread oral treatment for the fatal neurodegenerative disorder amyotrophic lateral sclerosis (ALS). The drug, whose mechanism of action is still obscure, mitigates progression of the illness, but unfortunately with only limited improvements. Herein we report the first demonstration, using a combination of computational and in vitro studies, that riluzole is an ATP-competitive inhibitor of the protein kinase CK1 isoform δ, with an IC 50 value of 16.1 μm. This allows us to rewrite its possible molecular mechanism of action in the treatment of ALS. The inhibition of CK1δ catalytic activity indeed links the two main pathological hallmarks of ALS: transactive response DNA-binding protein of 43 kDa (TDP-43) proteinopathy and glutamate excitotoxicity, exacerbated by the loss of expression of glial excitatory amino acid transporter-2 (EAAT2).

Targeting Protein Kinase CK1δ with Riluzole: Could It Be One of the Possible Missing Bricks to Interpret Its Effect in the Treatment of ALS from a Molecular Point of View?

BISSARO, MAICOL;Salmaso, Veronica;Sturlese, Mattia;Moro, Stefano
2018

Abstract

Riluzole, approved by the US Food and Drug Administration (FDA) in 1995, is the most widespread oral treatment for the fatal neurodegenerative disorder amyotrophic lateral sclerosis (ALS). The drug, whose mechanism of action is still obscure, mitigates progression of the illness, but unfortunately with only limited improvements. Herein we report the first demonstration, using a combination of computational and in vitro studies, that riluzole is an ATP-competitive inhibitor of the protein kinase CK1 isoform δ, with an IC 50 value of 16.1 μm. This allows us to rewrite its possible molecular mechanism of action in the treatment of ALS. The inhibition of CK1δ catalytic activity indeed links the two main pathological hallmarks of ALS: transactive response DNA-binding protein of 43 kDa (TDP-43) proteinopathy and glutamate excitotoxicity, exacerbated by the loss of expression of glial excitatory amino acid transporter-2 (EAAT2).
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3298627
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact