Among the influence factors affecting CT measurement chain, the study and analysis of CT system geometrical errors is of primary importance. In fact, the system geometry provides the necessary information to fully describe the geometry of data acquisition and performing the tomographic reconstruction on which all the dimensional analyses are based. In this work, different sets of CT experimental investigations, performed with a calibrated ball plate, were specifically designed to investigate the effects of CT system detector angular misalignments on CT measurement results. After characterizing the effects produced by each detector angular misalignment on CT measurement results, the paper shows results from NSI proprietary automatic method that effectively corrects for detector misalignments providing a significant enhancement of CT measurement accuracy.
Characterization of the effects of detector angular misalignments and accuracy enhancement of X-ray CT dimensional measurements
Simone Carmignato
2019
Abstract
Among the influence factors affecting CT measurement chain, the study and analysis of CT system geometrical errors is of primary importance. In fact, the system geometry provides the necessary information to fully describe the geometry of data acquisition and performing the tomographic reconstruction on which all the dimensional analyses are based. In this work, different sets of CT experimental investigations, performed with a calibrated ball plate, were specifically designed to investigate the effects of CT system detector angular misalignments on CT measurement results. After characterizing the effects produced by each detector angular misalignment on CT measurement results, the paper shows results from NSI proprietary automatic method that effectively corrects for detector misalignments providing a significant enhancement of CT measurement accuracy.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.