Fibre Optic Sensors (FOSs) offer unprecedented possibilities for the monitoring of engineering structures, such as foundation systems. Notably, the type of FOSs known as Distributed Fibre Optic Sensors (DFOSs) has the capability of monitoring variations in the observed physical field, such as strain and temperature, with spatial continuity along the fibre. This paper presents and discusses the distributed strain measurements collected along a continuous flight auger (CFA) pile, belonging to the foundation raft of a new bridge subjected to an acceptance static load test. The monitoring was performed using a DFOS system, which works according to the optical frequency domain reflectometry (OFDR) method and provides a spatial resolution of 10 mm and a strain resolution of 1 με. The in-situ monitoring results were used to calibrate a 3D Finite Element Model of the foundation system. The soil properties for the numerical model were also selected on the basis of a load test previously carried out on a similar pile at the same site

On distributed strains in a CFA pile via DFOSs measurements and numerical analysis

Cola S.
Writing – Original Draft Preparation
;
Tchamaleu Pangop F. C.
Formal Analysis
;
Simonini P.
Membro del Collaboration Group
;
Palmieri L.
Formal Analysis
;
2019

Abstract

Fibre Optic Sensors (FOSs) offer unprecedented possibilities for the monitoring of engineering structures, such as foundation systems. Notably, the type of FOSs known as Distributed Fibre Optic Sensors (DFOSs) has the capability of monitoring variations in the observed physical field, such as strain and temperature, with spatial continuity along the fibre. This paper presents and discusses the distributed strain measurements collected along a continuous flight auger (CFA) pile, belonging to the foundation raft of a new bridge subjected to an acceptance static load test. The monitoring was performed using a DFOS system, which works according to the optical frequency domain reflectometry (OFDR) method and provides a spatial resolution of 10 mm and a strain resolution of 1 με. The in-situ monitoring results were used to calibrate a 3D Finite Element Model of the foundation system. The soil properties for the numerical model were also selected on the basis of a load test previously carried out on a similar pile at the same site
2019
Proceedings of the XVII ECSMGE-2019 - Geotechnical Engineering foundation of the future
978-9935-9436-1-3
File in questo prodotto:
File Dimensione Formato  
2019_ecsmfe_Cola et al. Pile+Dfos 10.3207517ECSMGE-2019-0717.pdf

accesso aperto

Descrizione: articolo principale
Tipologia: Published (publisher's version)
Licenza: Accesso gratuito
Dimensione 749.04 kB
Formato Adobe PDF
749.04 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3319157
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact