Second-generation gravitational interferometers, such as Advanced LIGO and Advanced Virgo, will soon reach sensitivities sufficient to first detect gravitational waves and open a new era in the multimessenger investigations of the cosmos. The most violent and energetic astrophysical phenomena, including the mergers of compact objects or the core collapse of massive stars, are promising sources of gravitational waves, and are thought to be connected with transient phenomena such as Gamma Ray Bursts and supernovae. Combined observations of gravitational and electromagnetic signals from these events will thus provide an unique opportunity to unveil their progenitors and study the physics of compact objects. In particular, gamma-ray ground-based and space observatories such as Fermi or the Air Cherenkov Telescopes will be crucial to observe the high-energy electromagnetic counterparts of transient gravitational wave signals and provide a robust identification based on a precise sky localization. We will report on our studies of possible joint observation strategies carried on by gravitational interferometers and gamma-ray telescopes, with particular attention on the high-energy follow-up of Gamma Ray Bursts.

High-energy follow-up studies of gravitational wave transient events

Mapelli, Michela;
2015

Abstract

Second-generation gravitational interferometers, such as Advanced LIGO and Advanced Virgo, will soon reach sensitivities sufficient to first detect gravitational waves and open a new era in the multimessenger investigations of the cosmos. The most violent and energetic astrophysical phenomena, including the mergers of compact objects or the core collapse of massive stars, are promising sources of gravitational waves, and are thought to be connected with transient phenomena such as Gamma Ray Bursts and supernovae. Combined observations of gravitational and electromagnetic signals from these events will thus provide an unique opportunity to unveil their progenitors and study the physics of compact objects. In particular, gamma-ray ground-based and space observatories such as Fermi or the Air Cherenkov Telescopes will be crucial to observe the high-energy electromagnetic counterparts of transient gravitational wave signals and provide a robust identification based on a precise sky localization. We will report on our studies of possible joint observation strategies carried on by gravitational interferometers and gamma-ray telescopes, with particular attention on the high-energy follow-up of Gamma Ray Bursts.
2015
Proceedings of the 34th International Cosmic Ray Conference
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3346047
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact