Over the past few millennia, meandering fluvial channels drained coastal landscapes accumulating sedimentary successions that today are permeable pathways. Propagation of pollutants, agricultural exploitation and sand liquefaction are the main processes of environmental interest affecting these sedimentary bodies. The characterization of these bodies is thus of utmost general interest. In this study, we particularly highlight the contribution of noninvasive (remote and ground-based) investigation techniques, and the case study focuses on a late Holocene meander bend of the southern Venetian Plain (Northeast Italy). Electromagnetic induction (EMI) investigations, conducted with great care in terms of sonde stability and positioning, allowed the reconstruction of the electrical conductivity 3D structure of the shallow subsurface, revealing that the paleochannel ranges in depth between 0.8 and 5.4 m, and defines an almost 260 m-wide point bar. The electrical conductivity maps derived from EMI at different depths define an arcuate morphology indicating that bar accretion started from an already sinuous channel. Sedimentary cores ensure local ground-truth and help define the evolution of the channel bend. This paper shows that the combination of well-conceived and carefully performed inverted geophysical surveys, remote sensing and direct investigations provides evidence of the evolution of recent shallow sedimentary structures with unprecedented detail.

Geophysical and sedimentological investigations integrate remote-sensing data to depict geometry of fluvial sedimentary bodies: An example from holocene point-bar deposits of the venetian plain (italy)

Cassiani G.;Bellizia E.;Fontana A.;Boaga J.;D'Alpaos A.;Ghinassi M.
2020

Abstract

Over the past few millennia, meandering fluvial channels drained coastal landscapes accumulating sedimentary successions that today are permeable pathways. Propagation of pollutants, agricultural exploitation and sand liquefaction are the main processes of environmental interest affecting these sedimentary bodies. The characterization of these bodies is thus of utmost general interest. In this study, we particularly highlight the contribution of noninvasive (remote and ground-based) investigation techniques, and the case study focuses on a late Holocene meander bend of the southern Venetian Plain (Northeast Italy). Electromagnetic induction (EMI) investigations, conducted with great care in terms of sonde stability and positioning, allowed the reconstruction of the electrical conductivity 3D structure of the shallow subsurface, revealing that the paleochannel ranges in depth between 0.8 and 5.4 m, and defines an almost 260 m-wide point bar. The electrical conductivity maps derived from EMI at different depths define an arcuate morphology indicating that bar accretion started from an already sinuous channel. Sedimentary cores ensure local ground-truth and help define the evolution of the channel bend. This paper shows that the combination of well-conceived and carefully performed inverted geophysical surveys, remote sensing and direct investigations provides evidence of the evolution of recent shallow sedimentary structures with unprecedented detail.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3351532
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 11
social impact