Measurement of velocity fields is a fundamental topic in uid dynamics. Imagebased analysis methods such as Particle Image Velocimetry or Laser Doppler Velocimetry are usually used. However, these techniques need complex instrumentation and particular test conditions. In this work, a computer vision-based approach is developed in order to obtain vapour velocity field map in effective, robust and economic way. Moreover, iterative ltering algorithm is applied to improve the results. The implemented method is tested on a suction system for domestic use, and the obtained velocity maps are validated by hot-wire anemometry, leading to totally comparable results, both in terms of profile and mean velocity. Uncertainty analysis shows acceptable results, considering the random nature of the phenomenon.

Suction system vapour velocity map estimation through SIFT-based alghoritm

Capponi L.
Supervision
;
2020

Abstract

Measurement of velocity fields is a fundamental topic in uid dynamics. Imagebased analysis methods such as Particle Image Velocimetry or Laser Doppler Velocimetry are usually used. However, these techniques need complex instrumentation and particular test conditions. In this work, a computer vision-based approach is developed in order to obtain vapour velocity field map in effective, robust and economic way. Moreover, iterative ltering algorithm is applied to improve the results. The implemented method is tested on a suction system for domestic use, and the obtained velocity maps are validated by hot-wire anemometry, leading to totally comparable results, both in terms of profile and mean velocity. Uncertainty analysis shows acceptable results, considering the random nature of the phenomenon.
2020
Journal of Physics
AIVELA
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3354010
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact