The LIGO discoveries have rekindled suggestions that primordial black holes (BHs) may constitute part to all of the dark matter (DM) in the Universe. Such suggestions came from 1) the observed merger rate of the BHs, 2) their unusual masses, 3) their low/zero spins, and 4) also from the independently uncovered cosmic infrared background (CIB) fluctuations signal of high amplitude and coherence with unresolved cosmic X-ray background (CXB). Here we summarize the prospects to resolve this important issue with electromagnetic observations using the instruments and tools expected in the 2020's. These prospects appear promising to make significant, and potentially critical, advances. We demonstrate that in the next decade, new space- and ground-borne electromagnetic instruments, combined with concurrent theoretical efforts, should shed critical light on the long-considered link between primordial BHs and DM. Specifically the new data and methodologies under this program will involve: I) Probing with high precision the spatial spectrum of source-subtracted CIB with Euclid and WFIRST, and its coherence with unresolved cosmic X-ray background using eROSITA and Athena, II) Advanced searches for microlensing of Galactic stars by the intervening Galactic Halo BHs with OGLE, Gaia, LSST and WFIRST, III) Supernovae (SNe) lensing in the upcoming surveys with WFIRST, LSST and also potentially with Euclid and JWST, IV) Advanced theoretical work to understand the details of PBH accretion and evolution and their influence on cosmic microwave background (CMB) anisotropies in light of the next generation CMB experiments, V) Better new samples and theoretical understanding involving stability and properties of ultra faint dwarf galaxies, pulsar timing, and cosmological quasar lensing.

Electromagnetic probes of primordial black holes as dark matter

J. Chluba;A. Raccanelli;A. Riotto;
2019

Abstract

The LIGO discoveries have rekindled suggestions that primordial black holes (BHs) may constitute part to all of the dark matter (DM) in the Universe. Such suggestions came from 1) the observed merger rate of the BHs, 2) their unusual masses, 3) their low/zero spins, and 4) also from the independently uncovered cosmic infrared background (CIB) fluctuations signal of high amplitude and coherence with unresolved cosmic X-ray background (CXB). Here we summarize the prospects to resolve this important issue with electromagnetic observations using the instruments and tools expected in the 2020's. These prospects appear promising to make significant, and potentially critical, advances. We demonstrate that in the next decade, new space- and ground-borne electromagnetic instruments, combined with concurrent theoretical efforts, should shed critical light on the long-considered link between primordial BHs and DM. Specifically the new data and methodologies under this program will involve: I) Probing with high precision the spatial spectrum of source-subtracted CIB with Euclid and WFIRST, and its coherence with unresolved cosmic X-ray background using eROSITA and Athena, II) Advanced searches for microlensing of Galactic stars by the intervening Galactic Halo BHs with OGLE, Gaia, LSST and WFIRST, III) Supernovae (SNe) lensing in the upcoming surveys with WFIRST, LSST and also potentially with Euclid and JWST, IV) Advanced theoretical work to understand the details of PBH accretion and evolution and their influence on cosmic microwave background (CMB) anisotropies in light of the next generation CMB experiments, V) Better new samples and theoretical understanding involving stability and properties of ultra faint dwarf galaxies, pulsar timing, and cosmological quasar lensing.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11577/3364049
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact