Many neural networks for graphs are based on the graph convolution operator, proposed more than a decade ago. Since then, many alternative definitions have been proposed, that tend to add complexity (and non-linearity) to the model. In this paper, we follow the opposite direction by proposing a linear graph convolution operator. Despite its simplicity, we show that our convolution operator is more theoretically grounded than many proposals in literature, and shows improved predictive performance.

Linear graph convolutional networks

Navarin N.;Erb W.;Pasa L.;Sperduti A.
2020

Abstract

Many neural networks for graphs are based on the graph convolution operator, proposed more than a decade ago. Since then, many alternative definitions have been proposed, that tend to add complexity (and non-linearity) to the model. In this paper, we follow the opposite direction by proposing a linear graph convolution operator. Despite its simplicity, we show that our convolution operator is more theoretically grounded than many proposals in literature, and shows improved predictive performance.
ESANN 2020 - Proceedings, 28th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11577/3366869
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact