Parametric uncertainty is propagated through Reynolds-averaged Navier-Stokes (RANS) computations of a prototypical acetone/air aerosol stream flowing in a dry air environment. Two parameters are considered as uncertain: the inflow velocity dissipation and a coefficient that blends the discrete random walk and the gradient-based dispersion models. A Bayesian setting is employed to represent the degree of belief about the parameters of interest in terms of probability theory, such that uncertainty is described with probability density functions. Random variables are represented by means of polynomial chaos expansions. The sensitivity of mean axial velocity and mean vapor mass fraction to the uncertain parameters is discussed.
Uncertainty quantification analysis of rans of spray jets
Picano F.;
2020
Abstract
Parametric uncertainty is propagated through Reynolds-averaged Navier-Stokes (RANS) computations of a prototypical acetone/air aerosol stream flowing in a dry air environment. Two parameters are considered as uncertain: the inflow velocity dissipation and a coefficient that blends the discrete random walk and the gradient-based dispersion models. A Bayesian setting is employed to represent the degree of belief about the parameters of interest in terms of probability theory, such that uncertainty is described with probability density functions. Random variables are represented by means of polynomial chaos expansions. The sensitivity of mean axial velocity and mean vapor mass fraction to the uncertain parameters is discussed.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.