Parametric uncertainty is propagated through Reynolds-averaged Navier-Stokes (RANS) computations of a prototypical acetone/air aerosol stream flowing in a dry air environment. Two parameters are considered as uncertain: the inflow velocity dissipation and a coefficient that blends the discrete random walk and the gradient-based dispersion models. A Bayesian setting is employed to represent the degree of belief about the parameters of interest in terms of probability theory, such that uncertainty is described with probability density functions. Random variables are represented by means of polynomial chaos expansions. The sensitivity of mean axial velocity and mean vapor mass fraction to the uncertain parameters is discussed.

Uncertainty quantification analysis of rans of spray jets

Picano F.;
2020

Abstract

Parametric uncertainty is propagated through Reynolds-averaged Navier-Stokes (RANS) computations of a prototypical acetone/air aerosol stream flowing in a dry air environment. Two parameters are considered as uncertain: the inflow velocity dissipation and a coefficient that blends the discrete random walk and the gradient-based dispersion models. A Bayesian setting is employed to represent the degree of belief about the parameters of interest in terms of probability theory, such that uncertainty is described with probability density functions. Random variables are represented by means of polynomial chaos expansions. The sensitivity of mean axial velocity and mean vapor mass fraction to the uncertain parameters is discussed.
2020
AIAA Propulsion and Energy 2020 Forum
AIAA Propulsion and Energy 2020 Forum
978-1-62410-602-6
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3388330
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact