Normalization is an important step in the analysis of single-cell RNA-seq data. While no single method outperforms all others in all datasets, the choice of normalization can have profound impact on the results. Data-driven metrics can be used to rank normalization methods and select the best performers. Here, we show how to use R/Bioconductor to calculate normalization factors, apply them to compute normalized data, and compare several normalization approaches. Finally, we briefly show how to perform downstream analysis steps on the normalized data.

Normalization of Single-Cell RNA-Seq Data

Davide Risso
2021

Abstract

Normalization is an important step in the analysis of single-cell RNA-seq data. While no single method outperforms all others in all datasets, the choice of normalization can have profound impact on the results. Data-driven metrics can be used to rank normalization methods and select the best performers. Here, we show how to use R/Bioconductor to calculate normalization factors, apply them to compute normalized data, and compare several normalization approaches. Finally, we briefly show how to perform downstream analysis steps on the normalized data.
2021
RNA Bioinformatics
978-1-0716-1306-1
File in questo prodotto:
File Dimensione Formato  
Risso2021_NormalizationChapter.pdf

Accesso riservato

Tipologia: Published (Publisher's Version of Record)
Licenza: Accesso privato - non pubblico
Dimensione 701.38 kB
Formato Adobe PDF
701.38 kB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3389918
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact