In the last several years, the need for an alternative to chemical propulsive systems for low-orbit satellite deorbiting has become increasingly evident; a Tethered System can provide adequate thrust or drag without the complications of combustions and with a minimal impact on the environment. In this context, the authors are part of a team that is studying various tether applications and building a prototype of an electrodynamic tether system. The goal of this paper is to characterize tether materials in order to find valid solutions for future space tether missions. Mission requirements (e.g., the survivability to hypervelocity impacts and the capability to damp oscillations in electrodynamic tethers) influence the choice of tether parameters such as cross section geometry (round wires or tapes), materials, length, and cross section sizes. The determination of the elastic characteristics and damping coefficients is carried out through a campaign of experiments conducted with both direct stress/strain measurements and the laboratory facility SPAcecRraft Testbed for Autonomous proximity operatioNs experimentS (SPARTANS) on a low friction table at the University of Padova. In the latter case, the stiffness and damping of a flexible line were verified by applying different tensile load profiles and then measuring the tether-line dynamic response in terms of tension spike amplitude, oscillation decay, and estimation of the damping coefficient.

Space tethers: parameters reconstructions and tests

Alice Brunello;Lorenzo Olivieri;Giulia Sarego;Andrea Valmorbida;Enrico Lorenzini
2021

Abstract

In the last several years, the need for an alternative to chemical propulsive systems for low-orbit satellite deorbiting has become increasingly evident; a Tethered System can provide adequate thrust or drag without the complications of combustions and with a minimal impact on the environment. In this context, the authors are part of a team that is studying various tether applications and building a prototype of an electrodynamic tether system. The goal of this paper is to characterize tether materials in order to find valid solutions for future space tether missions. Mission requirements (e.g., the survivability to hypervelocity impacts and the capability to damp oscillations in electrodynamic tethers) influence the choice of tether parameters such as cross section geometry (round wires or tapes), materials, length, and cross section sizes. The determination of the elastic characteristics and damping coefficients is carried out through a campaign of experiments conducted with both direct stress/strain measurements and the laboratory facility SPAcecRraft Testbed for Autonomous proximity operatioNs experimentS (SPARTANS) on a low friction table at the University of Padova. In the latter case, the stiffness and damping of a flexible line were verified by applying different tensile load profiles and then measuring the tether-line dynamic response in terms of tension spike amplitude, oscillation decay, and estimation of the damping coefficient.
2021
Proceedings of the 2021 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR AEROSPACE
File in questo prodotto:
File Dimensione Formato  
Space tethers parameters reconstructions and tests.pdf

accesso aperto

Descrizione: © 2021 IEEE. The work was performed under a grant from EU funding with a deposit mandate, personal use of this material is permitted. Permission from IEEE must be obtained for all other uses.
Tipologia: Postprint (accepted version)
Licenza: Accesso libero
Dimensione 2.82 MB
Formato Adobe PDF
2.82 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3394817
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact