Solar System bodies undergo to daily and periodical variations of temperature that mainly depend on their closeness to the Sun. It is known that mineral expansion and contraction due to such variations modify the thermal infrared spectra acquired on solid surfaces. Therefore, it becomes crucial to know the best temperature range at which the acquisition itself should be carried out to get reliable information on the mineralogy of such bodies. Here we provide the thermal expansion of olivine between 20 and 298 K determined by X-ray diffraction. Our data reveal the non-linear behaviour of silicates that undergo to low temperatures, where volume variations appear positively correlated with temperatures. Subtle bond-length variations occurring at low temperatures are then expected to minimally affect vibrational absorption positions. We suggest that thermal infrared spectra of those Solar-System surfaces that are not exceeding 300 K provide reliable information about not only the silicate mineral identification but also on their chemical composition, regardless of the instantaneous temperature.

The best temperature range to acquire reliable thermal infrared spectra from orbit

Nestola F.
Writing – Original Draft Preparation
;
Pamato M. G.
Writing – Original Draft Preparation
;
2021

Abstract

Solar System bodies undergo to daily and periodical variations of temperature that mainly depend on their closeness to the Sun. It is known that mineral expansion and contraction due to such variations modify the thermal infrared spectra acquired on solid surfaces. Therefore, it becomes crucial to know the best temperature range at which the acquisition itself should be carried out to get reliable information on the mineralogy of such bodies. Here we provide the thermal expansion of olivine between 20 and 298 K determined by X-ray diffraction. Our data reveal the non-linear behaviour of silicates that undergo to low temperatures, where volume variations appear positively correlated with temperatures. Subtle bond-length variations occurring at low temperatures are then expected to minimally affect vibrational absorption positions. We suggest that thermal infrared spectra of those Solar-System surfaces that are not exceeding 300 K provide reliable information about not only the silicate mineral identification but also on their chemical composition, regardless of the instantaneous temperature.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3395387
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact