We investigate the satisfiability problem for a logic for true concurrency, whose formulae predicate about events in computations and their causal (in)dependencies. Variants of such logics have been studied, with different expressiveness, corresponding to a number of true concurrent behavioural equivalences. Here we focus on a mu-calculus style logic that represents the counterpart of history-preserving (hp-)bisimilarity, a typical equivalence in the true concurrent spectrum of bisimilarities. It is known that one can decide whether or not two 1-safe Petri nets (and in general finite asynchronous transition systems) are hp-bisimilar. Moreover, for the logic that captures hp-bisimilarity the model-checking problem is decidable with respect to prime event structures satisfying suitable regularity conditions. To the best of our knowledge, the problem of satisfiability has been scarcely investigated in the realm of true concurrent logics. We show that satisfiability for the logic for hp-bisimilarity is undecidable via a reduction from domino tilings. The fragment of the logic without fixpoints, instead, turns out to be decidable. We consider these results a first step towards a more complete investigation of the satisfiability problem for true concurrent logics, which we believe to have notable solvable cases.

(Un)Decidability for History Preserving True Concurrent Logics

Paolo Baldan
;
Alberto Carraro
;
Tommaso Padoan
2021

Abstract

We investigate the satisfiability problem for a logic for true concurrency, whose formulae predicate about events in computations and their causal (in)dependencies. Variants of such logics have been studied, with different expressiveness, corresponding to a number of true concurrent behavioural equivalences. Here we focus on a mu-calculus style logic that represents the counterpart of history-preserving (hp-)bisimilarity, a typical equivalence in the true concurrent spectrum of bisimilarities. It is known that one can decide whether or not two 1-safe Petri nets (and in general finite asynchronous transition systems) are hp-bisimilar. Moreover, for the logic that captures hp-bisimilarity the model-checking problem is decidable with respect to prime event structures satisfying suitable regularity conditions. To the best of our knowledge, the problem of satisfiability has been scarcely investigated in the realm of true concurrent logics. We show that satisfiability for the logic for hp-bisimilarity is undecidable via a reduction from domino tilings. The fragment of the logic without fixpoints, instead, turns out to be decidable. We consider these results a first step towards a more complete investigation of the satisfiability problem for true concurrent logics, which we believe to have notable solvable cases.
2021
MFCS 2021
Mathematical Foundations of Computer Science (MFCS) 2021
File in questo prodotto:
File Dimensione Formato  
MFCS-2021-UndecidabilityHP.pdf

accesso aperto

Descrizione: Copia PDF
Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 839.7 kB
Formato Adobe PDF
839.7 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3401559
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact