Kv1.3 is a voltage gated potassium channel located in the plasma membrane, as well as at intracellular levels, such as mitochondria (mitoKv1.3), nucleus and Golgi apparatus. The plasma membrane channel has been shown to be important for cell proliferation, while the mitochondrial counterpart has been related to modulation of cell death. Moreover, altered expression of Kv1.3 was observed in various tumors and Kv1.3 seems to be involved in development and progression of various cancerous forms. Recent experimental evidences have proved that pharmacological inhibition of the mitoKv1.3 succeeded in reducing up to 90% of tumor volume in vivo in orthotopic mouse model. Furthermore, mitoKv1.3 modulation could impact on cell proliferation as well as on regulation of intracellular signaling pathways. Indeed, the treatment with sub-lethal doses of mitoKv1.3 inhibitors can downregulate Wnt-β catenin signaling by reducing mitochondrial ATP production and triggering ER-stress. In this review, we describe the role of the mitoKv1.3 in cell death, cancer and intracellular signaling. We will discuss how pharmacological modulation of mitochondrial potassium fluxes impact on mitochondrial membrane potential, reactive oxygen species production and ATP synthesis. All these changes in mitochondrial fitness are related to cell proliferation as well as to cell death and finally on cancer development and progression, so Kv1.3 (and mitoKv1.3) could be now considered a new oncological target.

Mitochondrial Kv1.3: a New Target in Cancer Biology?

Vanessa Checchetto
Writing – Original Draft Preparation
;
Elena Prosdocimi
Writing – Original Draft Preparation
;
Luigi Leanza
Writing – Original Draft Preparation
2019

Abstract

Kv1.3 is a voltage gated potassium channel located in the plasma membrane, as well as at intracellular levels, such as mitochondria (mitoKv1.3), nucleus and Golgi apparatus. The plasma membrane channel has been shown to be important for cell proliferation, while the mitochondrial counterpart has been related to modulation of cell death. Moreover, altered expression of Kv1.3 was observed in various tumors and Kv1.3 seems to be involved in development and progression of various cancerous forms. Recent experimental evidences have proved that pharmacological inhibition of the mitoKv1.3 succeeded in reducing up to 90% of tumor volume in vivo in orthotopic mouse model. Furthermore, mitoKv1.3 modulation could impact on cell proliferation as well as on regulation of intracellular signaling pathways. Indeed, the treatment with sub-lethal doses of mitoKv1.3 inhibitors can downregulate Wnt-β catenin signaling by reducing mitochondrial ATP production and triggering ER-stress. In this review, we describe the role of the mitoKv1.3 in cell death, cancer and intracellular signaling. We will discuss how pharmacological modulation of mitochondrial potassium fluxes impact on mitochondrial membrane potential, reactive oxygen species production and ATP synthesis. All these changes in mitochondrial fitness are related to cell proliferation as well as to cell death and finally on cancer development and progression, so Kv1.3 (and mitoKv1.3) could be now considered a new oncological target.
File in questo prodotto:
File Dimensione Formato  
000195.pdf

accesso aperto

Descrizione: Review
Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 584.13 kB
Formato Adobe PDF
584.13 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3401673
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 16
  • ???jsp.display-item.citation.isi??? ND
social impact