This paper proposes a novel network architecture integrating a multi-hop Long Range (LoRa)-based thin linear network within a LoRa Wide Area Network (LoRaWAN) infrastructure, with the aim of proposing linear distributed measurement systems forwarding their collected data to a LoRaWAN server by means of a hybrid LoRa-LoRaWAN node. Such device is able to collect LoRa packets coming from the linear network and to encapsulate them in LoRaWAN packets transmitted to the remote server by means of standard LoRaWAN Gateways. The operation of the nodes is regulated by an ad-hoc routing protocol which aims at minimizing their active period, in order to reduce their power consumption increasing the overall system lifetime. Similarly, the synchronization of the nodes aims at increasing the robustness of the network reducing at minimum packet losses. The effectiveness of the proposed network architecture in terms of successful packet deliveries and reduction of active time is tested in different configurations, exploiting 2-node, 3-node and 4-node chains as well as adopting increasingly larger cycle periods. Results show that the proposed configuration ensures a noteworthy robustness in terms of packets delivery while maintaining the duty-cycling at levels that may guarantee long life times and autonomous operation to the overall infrastructure.

IoT multi-hop facilities via LORA modulation and LORAWAN protocol within thin linear networks

Pozzebon A.
2021

Abstract

This paper proposes a novel network architecture integrating a multi-hop Long Range (LoRa)-based thin linear network within a LoRa Wide Area Network (LoRaWAN) infrastructure, with the aim of proposing linear distributed measurement systems forwarding their collected data to a LoRaWAN server by means of a hybrid LoRa-LoRaWAN node. Such device is able to collect LoRa packets coming from the linear network and to encapsulate them in LoRaWAN packets transmitted to the remote server by means of standard LoRaWAN Gateways. The operation of the nodes is regulated by an ad-hoc routing protocol which aims at minimizing their active period, in order to reduce their power consumption increasing the overall system lifetime. Similarly, the synchronization of the nodes aims at increasing the robustness of the network reducing at minimum packet losses. The effectiveness of the proposed network architecture in terms of successful packet deliveries and reduction of active time is tested in different configurations, exploiting 2-node, 3-node and 4-node chains as well as adopting increasingly larger cycle periods. Results show that the proposed configuration ensures a noteworthy robustness in terms of packets delivery while maintaining the duty-cycling at levels that may guarantee long life times and autonomous operation to the overall infrastructure.
2021
2021 IEEE Sensors Applications Symposium, SAS 2021 - Proceedings
978-1-7281-9431-8
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3405862
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact