{Let $d(n)=\sum_{d\mid n}1$ be the divisor function. Using the Landau--Selberg--Delange method we determine the asymptotic preference factor $\rho(q)$ of $d(n)$ for non-zero squares modulo $q$ over non-squares in case $q$ is an odd prime. This factor is $1$ if $q\equiv \pm 3\pmod{8}$ and, using estimates for Fekete polynomials, it is seen to be roughly of size $2^{n_q}$ otherwise, where $n_q$ is the least quadratic non-residue mod $q.$ We also show that the twin primes conjecture is equivalent to the existence of a subsequence of primes $q$ for which $\liminf n_q=\infty$ and $\rho(q)<2^{2+n_q}/5.$

Quadratic residue bias of the divisor function, Fekete polynomials and prime gaps

Alessandro Languasco
;
In corso di stampa

Abstract

{Let $d(n)=\sum_{d\mid n}1$ be the divisor function. Using the Landau--Selberg--Delange method we determine the asymptotic preference factor $\rho(q)$ of $d(n)$ for non-zero squares modulo $q$ over non-squares in case $q$ is an odd prime. This factor is $1$ if $q\equiv \pm 3\pmod{8}$ and, using estimates for Fekete polynomials, it is seen to be roughly of size $2^{n_q}$ otherwise, where $n_q$ is the least quadratic non-residue mod $q.$ We also show that the twin primes conjecture is equivalent to the existence of a subsequence of primes $q$ for which $\liminf n_q=\infty$ and $\rho(q)<2^{2+n_q}/5.$
In corso di stampa
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3420134
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact