In the framework of parametric and nonparametric distributed estimation, we introduce and mathematically analyze some consensus-based regression strategies characterized by a guess of the number of agents in the network as a parameter. The parametric estimators assume a-priori information about the finite set of parameters to be estimated, while the the nonparametric use a reproducing kernel Hilbert space as the hypothesis space. The analysis of the proposed distributed regressors offers some sufficient conditions assuring the estimators to perform better, under the variance of the estimation error metric, than local optimal ones. Moreover it characterizes, under euclidean distance metrics, the performance losses of the distributed estimators with respect to centralized optimal ones. We also offer a novel on-line algorithm that distributedly computes certificates of quality attesting the goodness of the estimation results, and show that the nonparametric distributed regressor is an approximate distributed Regularization Network requiring small computational, communication and data storage efforts. We then analyze the problem of estimating a function from different noisy data sets collected by spatially distributed sensors and subject to unknown temporal shifts, and perform time delay estimation through the minimization of functions of inner products in reproducing kernel Hilbert spaces. Due to the importance of the knowledge of the number of agents in the previously analyzed algorithms, we also propose a design methodology for its distributed estimation. This algorithm is based on the following paradigm: some locally randomly generated values are exchanged among the various sensors, and are then modified by known consensus-based strategies. Statistical analysis of the a-consensus values allows the estimation of the number of sensors participating in the process. The first main feature of this approach is that algorithms are completely distributed, since they do not require leader election steps. Moreover sensors are not requested to transmit authenticating information like identification numbers or similar data, and thus the strategy can be implemented even if privacy problems arise. After a rigorous formulation of the paradigm we analyze some practical examples, fully characterize them from a statistical point of view, and finally provide some general theoretical results among with asymptotic analyses.
In questa tesi vengono introdotti e analizzati alcuni algoritmi di regressione distribuita parametrica e nonparametrica, basati su tecniche di consenso e parametrizzati da un parametro il cui significato è una stima del numero di sensori presenti nella rete. Gli algoritmi parametrici assumono la conoscenza di informazione a-priori sulle quantità da stimare, mentre quelli nonparametrici utilizzano come spazio delle ipotesi uno spazio di Hilbert a nucleo riproducente. Dall'analisi degli stimatori distribuiti proposti si ricavano alcune condizioni sufficienti che, se assicurate, garantiscono che le prestazioni degli stimatori distribuiti sono migliori di quelli locali (usando come metrica la varianza dell'errore di stima). Inoltre dalla stessa analisi si caratterizzano le perdite di prestazioni che si hanno usando gli stimatori distribuiti invece che quelli centralizzati e ottimi (usando come metrica la distanza euclidea tra le due diverse stime ottenute). Inoltre viene offerto un nuovo algoritmo che calcola in maniera distribuita dei certificati di qualità che garantiscono la bontà dei risultati ottenuti con gli stimatori distribuiti. Si mostra inoltre come lo stimatore nonparametrico distribuito proposto sia in realtà una versione approssimata delle cosiddette ``Reti di Regolarizzazione'', e come esso richieda poche risorse computazionali, di memoria e di comunicazione tra sensori. Si analizza quindi il caso di sensori spazialmente distribuiti e soggetti a ritardi temporali sconosciuti. Si mostra dunque come si possano stimare, minimizzando opportune funzioni di prodotti interni negli spazi di Hilbert precedentemente considerati, sia la funzione vista dai sensori che i relativi ritardi visti da questi. A causa dell'importanza della conoscenza del numero di agenti negli algoritmi proposti precedentemente, viene proposta una nuova metodologia per sviluppare algoritmi di stima distribuita di tale numero, basata sulla seguente idea: come primo passo gli agenti generano localmente alcuni numeri, in maniera casuale e da una densità di probabilità nota a tutti. Quindi i sensori si scambiano e modificano questi dati usando algoritmi di consenso quali la media o il massimo; infine, tramite analisi statistiche sulla distribuzione finale dei dati modificati, si può ottenere dell'informazione su quanti agenti hanno partecipato al processo di consenso e modifica. Una caratteristica di questo approccio è che gli algoritmi sono completamente distribuiti, in quanto non richiedono passi di elezione di leaders. Un'altra è che ai sensori non è richiesto di trasmettere informazioni sensibili quali codici identificativi o altro, quindi la strategia è implementabile anche se in presenza di problemi di riservatezza. Dopo una formulazione rigorosa del paradigma, analizziamo alcuni esempi pratici, li caratterizziamo completamente dal punto di vista statistico, e infine offriamo alcuni risultati teorici generali e analisi asintotiche.
Distributed Parametric-Nonparametric Estimation in Networked Control Systems / Varagnolo, Damiano. - (2011 Jan 28).
Distributed Parametric-Nonparametric Estimation in Networked Control Systems
Varagnolo, Damiano
2011
Abstract
In questa tesi vengono introdotti e analizzati alcuni algoritmi di regressione distribuita parametrica e nonparametrica, basati su tecniche di consenso e parametrizzati da un parametro il cui significato è una stima del numero di sensori presenti nella rete. Gli algoritmi parametrici assumono la conoscenza di informazione a-priori sulle quantità da stimare, mentre quelli nonparametrici utilizzano come spazio delle ipotesi uno spazio di Hilbert a nucleo riproducente. Dall'analisi degli stimatori distribuiti proposti si ricavano alcune condizioni sufficienti che, se assicurate, garantiscono che le prestazioni degli stimatori distribuiti sono migliori di quelli locali (usando come metrica la varianza dell'errore di stima). Inoltre dalla stessa analisi si caratterizzano le perdite di prestazioni che si hanno usando gli stimatori distribuiti invece che quelli centralizzati e ottimi (usando come metrica la distanza euclidea tra le due diverse stime ottenute). Inoltre viene offerto un nuovo algoritmo che calcola in maniera distribuita dei certificati di qualità che garantiscono la bontà dei risultati ottenuti con gli stimatori distribuiti. Si mostra inoltre come lo stimatore nonparametrico distribuito proposto sia in realtà una versione approssimata delle cosiddette ``Reti di Regolarizzazione'', e come esso richieda poche risorse computazionali, di memoria e di comunicazione tra sensori. Si analizza quindi il caso di sensori spazialmente distribuiti e soggetti a ritardi temporali sconosciuti. Si mostra dunque come si possano stimare, minimizzando opportune funzioni di prodotti interni negli spazi di Hilbert precedentemente considerati, sia la funzione vista dai sensori che i relativi ritardi visti da questi. A causa dell'importanza della conoscenza del numero di agenti negli algoritmi proposti precedentemente, viene proposta una nuova metodologia per sviluppare algoritmi di stima distribuita di tale numero, basata sulla seguente idea: come primo passo gli agenti generano localmente alcuni numeri, in maniera casuale e da una densità di probabilità nota a tutti. Quindi i sensori si scambiano e modificano questi dati usando algoritmi di consenso quali la media o il massimo; infine, tramite analisi statistiche sulla distribuzione finale dei dati modificati, si può ottenere dell'informazione su quanti agenti hanno partecipato al processo di consenso e modifica. Una caratteristica di questo approccio è che gli algoritmi sono completamente distribuiti, in quanto non richiedono passi di elezione di leaders. Un'altra è che ai sensori non è richiesto di trasmettere informazioni sensibili quali codici identificativi o altro, quindi la strategia è implementabile anche se in presenza di problemi di riservatezza. Dopo una formulazione rigorosa del paradigma, analizziamo alcuni esempi pratici, li caratterizziamo completamente dal punto di vista statistico, e infine offriamo alcuni risultati teorici generali e analisi asintotiche.File | Dimensione | Formato | |
---|---|---|---|
main.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
Non specificato
Dimensione
1.3 MB
Formato
Adobe PDF
|
1.3 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.