The overall aim of the work described in this thesis is to bring a number of contributions to hydrology and hydrological modeling in the framework of a specific physically-based numerical model for integrated surface subsurface and flow-transport processes, the CATchment-HYdrology Flow-Transport (CATHY_FT) model. These contributions revolve around three main themes: the enhancement of the numerical performance of hydrological models for flow and transport phenomena, the improvement of our current understanding of complex boundary conditions in order to reduce the errors associated with their modeling, and the testing and benchmarking of distributed physically-based models for groundwater flow and transport processes. The work to achieve the general objective is elaborated into four stages. First, the Larson-Niklasson post-processing algorithm is implemented in CATHY_FT to reconstruct mass-conservative velocities from a linear, or P1, Galerkin solution of Richards' equation. This is done to improve the accuracy and mass balance properties of the companion advective transport model (finite volume-based), which rely on accurate velocity fields as input. Through a comparison between the results from the reconstructed velocities and the P1 Galerkin velocities, it is shown that a locally mass-conservative velocity field is necessary to obtain accurate transport results. Second, a detailed and novel analysis of the behavior of seepage face boundaries is performed with the flow model of CATHY_FT. The numerical simulations examine the model's performance under complex conditions such as heterogeneity and coupled surface/subsurface flow. It is shown that the overall numerical solution can be greatly affected by the way seepage face boundaries are handled in hydrological models and that careful considerations are required when using simple approximations, in the presence of heterogeneous slopes, and for seepage faces forming on a portion of the land surface. Third, CATHY_FT is implemented and run at the Landscape Evolution Observatory of the Biosphere 2 facility, Arizona. A detailed modeling analysis is performed of the experimental data collected during an isotope tracer experiment and from an intensively-measured hillslope, including quantity and quality of groundwater discharge and point-scale flow and transport data. This flow and tracer data is used to incrementally explore complex phenomena and associated hypotheses (e.g., heterogeneity, fractionation, and dispersion), progressing from flow to transport and from integrated to point-scale response analysis. This incremental approach highlights the challenges in testing and validating the new generation of integrated hydrological models when considering many types and levels of observation data. Finally, a concluding analysis is performed that relates to all three themes of the thesis, describing some of the features of the CATHY_FT model, discussing key issues associated to its further development, and testing its physical and numerical behavior for both real and synthetic scenarios. This final stage of the thesis addresses the myriad challenges faced in accurately and efficiently resolving the difficult behavior of the advection-dispersion equation for subsurface solute transport, in properly handling the complex boundary conditions for solute interactions across the land surface, and generally in capturing process interactions and feedbacks between flow and transport phenomena in surface and subsurface environments.

Lo scopo di questa tesi e' fornire dei contributi all'idrologia e alla modellazione idrologica nell'ambito di un modello numerico specifico, il modello CATchment HYdrology Flow-Transport (CATHY_FT), utilizzato per simulare processi integrati di superficie e sotterranei e di flusso e trasporto. Questi contributi riguardano tre temi principali: il miglioramento del comportamento numerico di modelli idrologici che simulano fenomeni di flusso e trasporto, l'approfondimento di condizioni al contorno complesse con l'obbiettivo di ridurre gli errori relativi alla loro modellazione e il test e l'analisi comparativa di modelli a base fisica utilizzati per simulare processi di flusso e trasporto sotterranei. Il lavoro per raggiungere l'obbiettivo generale viene diviso in quattro step. Nel primo step l'algoritmo di Larson-Niklasson e' implementato in CATHY_FT per ricostruire velocita' conservatrici della massa a partire da una soluzione lineare (o P1) di Galerkin dell'equazione di Richards, in modo da permettere al modello di trasporto avvettivo (basato sui volumi finiti) di conservare la massa, cosa che dipende strettamente dall'accuratezza del campo di velocita' che questo utilizza. Confrontando i risultati ottenuti con le velocita' derivanti dalla soluzione P1 di Galerkin e quelle ricostruite, viene mostrato che un campo di velocita' localmente conservativo e' necessario per ottenere risultati accurati con il trasporto. Nella seconda fase viene effettuata un'analisi dettagliata del comportamento delle condizioni ai limiti nella zona del fronte di infiltrazione con il modello di flusso di CATHY_FT. Le simulazioni numeriche esaminano il comportamento del modello in condizioni complesse come quelle di eterogeneita' e di flusso di superficie e sotterraneo accoppiato. Viene dimostrato che la soluzione numerica puo' essere fortemente influenzata dal modo in cui la zona di infiltrazione viene trattata nei modelli idrologici e che considerazioni accurate sono sempre necessarie quando si usano approssimazioni, in presenza di versanti eterogenei e per le zone di infiltrazione che si formano nella superficie terrestre. Come terzo step, CATHY_FT viene testato al Landscape Evolution Observatory del Biosphere 2 in Arizona. Viene eseguita un'analisi dettagliata di dati sperimentati raccolti durante un esperimento di tracciante isotopico e da un versante artificiale intensivamente controllato. Le informazioni comprendono la qualita' e la quantita' della portata sotterranea e dati puntuali di flusso e trasporto. Questi dati di flusso e tracciante sono utilizati per esplorare fenomeni complessi e le ipotesi associate (e.g., eterogeneita', frazionamento e dispersione), procedendo dalla risposta di flusso a quella di trasporto e dalla risposta integrata a quella puntuale. Questo approccio incrementale evidenzia le sfide legate alla validazione della nuova generazione di modelli idrologici integrati quando si guarda a diversi tipi e livelli di dati osservati. Infine, viene eseguita un'analisi conclusiva che si lega a tutti e tre i temi della tesi, descrivendo alcune caratteristiche del modello CATHY_FT, discutendo problemi chiave legati al suo sviluppo futuro e testando il suo compertamento fisico e numerico sia per scenari sintetici che reali. Questo step finale della tesi affronta la miriade di sfide legate alla risoluzione accurata ed efficace del comportamento difficile dell'equazione di avezione-dispersione per processi di trasporto di soluto sotterraneo, alla risoluzione appropriata delle condizioni ai limiti complesse per rappresentare le interazioni di soluto attraverso la superficie terrestre e, in generale, alla rappresentazione delle interazioni tra i fenomeni di flusso e trasporto nell'ambiente superficiale e sotterraneo.

Numerical modeling of flow and solute transport phenomena in subsurface and coupled surface-subsurface hydrology / Scudeler, Carlotta. - (2016 Sep 29).

Numerical modeling of flow and solute transport phenomena in subsurface and coupled surface-subsurface hydrology

Scudeler, Carlotta
2016

Abstract

Lo scopo di questa tesi e' fornire dei contributi all'idrologia e alla modellazione idrologica nell'ambito di un modello numerico specifico, il modello CATchment HYdrology Flow-Transport (CATHY_FT), utilizzato per simulare processi integrati di superficie e sotterranei e di flusso e trasporto. Questi contributi riguardano tre temi principali: il miglioramento del comportamento numerico di modelli idrologici che simulano fenomeni di flusso e trasporto, l'approfondimento di condizioni al contorno complesse con l'obbiettivo di ridurre gli errori relativi alla loro modellazione e il test e l'analisi comparativa di modelli a base fisica utilizzati per simulare processi di flusso e trasporto sotterranei. Il lavoro per raggiungere l'obbiettivo generale viene diviso in quattro step. Nel primo step l'algoritmo di Larson-Niklasson e' implementato in CATHY_FT per ricostruire velocita' conservatrici della massa a partire da una soluzione lineare (o P1) di Galerkin dell'equazione di Richards, in modo da permettere al modello di trasporto avvettivo (basato sui volumi finiti) di conservare la massa, cosa che dipende strettamente dall'accuratezza del campo di velocita' che questo utilizza. Confrontando i risultati ottenuti con le velocita' derivanti dalla soluzione P1 di Galerkin e quelle ricostruite, viene mostrato che un campo di velocita' localmente conservativo e' necessario per ottenere risultati accurati con il trasporto. Nella seconda fase viene effettuata un'analisi dettagliata del comportamento delle condizioni ai limiti nella zona del fronte di infiltrazione con il modello di flusso di CATHY_FT. Le simulazioni numeriche esaminano il comportamento del modello in condizioni complesse come quelle di eterogeneita' e di flusso di superficie e sotterraneo accoppiato. Viene dimostrato che la soluzione numerica puo' essere fortemente influenzata dal modo in cui la zona di infiltrazione viene trattata nei modelli idrologici e che considerazioni accurate sono sempre necessarie quando si usano approssimazioni, in presenza di versanti eterogenei e per le zone di infiltrazione che si formano nella superficie terrestre. Come terzo step, CATHY_FT viene testato al Landscape Evolution Observatory del Biosphere 2 in Arizona. Viene eseguita un'analisi dettagliata di dati sperimentati raccolti durante un esperimento di tracciante isotopico e da un versante artificiale intensivamente controllato. Le informazioni comprendono la qualita' e la quantita' della portata sotterranea e dati puntuali di flusso e trasporto. Questi dati di flusso e tracciante sono utilizati per esplorare fenomeni complessi e le ipotesi associate (e.g., eterogeneita', frazionamento e dispersione), procedendo dalla risposta di flusso a quella di trasporto e dalla risposta integrata a quella puntuale. Questo approccio incrementale evidenzia le sfide legate alla validazione della nuova generazione di modelli idrologici integrati quando si guarda a diversi tipi e livelli di dati osservati. Infine, viene eseguita un'analisi conclusiva che si lega a tutti e tre i temi della tesi, descrivendo alcune caratteristiche del modello CATHY_FT, discutendo problemi chiave legati al suo sviluppo futuro e testando il suo compertamento fisico e numerico sia per scenari sintetici che reali. Questo step finale della tesi affronta la miriade di sfide legate alla risoluzione accurata ed efficace del comportamento difficile dell'equazione di avezione-dispersione per processi di trasporto di soluto sotterraneo, alla risoluzione appropriata delle condizioni ai limiti complesse per rappresentare le interazioni di soluto attraverso la superficie terrestre e, in generale, alla rappresentazione delle interazioni tra i fenomeni di flusso e trasporto nell'ambiente superficiale e sotterraneo.
29-set-2016
The overall aim of the work described in this thesis is to bring a number of contributions to hydrology and hydrological modeling in the framework of a specific physically-based numerical model for integrated surface subsurface and flow-transport processes, the CATchment-HYdrology Flow-Transport (CATHY_FT) model. These contributions revolve around three main themes: the enhancement of the numerical performance of hydrological models for flow and transport phenomena, the improvement of our current understanding of complex boundary conditions in order to reduce the errors associated with their modeling, and the testing and benchmarking of distributed physically-based models for groundwater flow and transport processes. The work to achieve the general objective is elaborated into four stages. First, the Larson-Niklasson post-processing algorithm is implemented in CATHY_FT to reconstruct mass-conservative velocities from a linear, or P1, Galerkin solution of Richards' equation. This is done to improve the accuracy and mass balance properties of the companion advective transport model (finite volume-based), which rely on accurate velocity fields as input. Through a comparison between the results from the reconstructed velocities and the P1 Galerkin velocities, it is shown that a locally mass-conservative velocity field is necessary to obtain accurate transport results. Second, a detailed and novel analysis of the behavior of seepage face boundaries is performed with the flow model of CATHY_FT. The numerical simulations examine the model's performance under complex conditions such as heterogeneity and coupled surface/subsurface flow. It is shown that the overall numerical solution can be greatly affected by the way seepage face boundaries are handled in hydrological models and that careful considerations are required when using simple approximations, in the presence of heterogeneous slopes, and for seepage faces forming on a portion of the land surface. Third, CATHY_FT is implemented and run at the Landscape Evolution Observatory of the Biosphere 2 facility, Arizona. A detailed modeling analysis is performed of the experimental data collected during an isotope tracer experiment and from an intensively-measured hillslope, including quantity and quality of groundwater discharge and point-scale flow and transport data. This flow and tracer data is used to incrementally explore complex phenomena and associated hypotheses (e.g., heterogeneity, fractionation, and dispersion), progressing from flow to transport and from integrated to point-scale response analysis. This incremental approach highlights the challenges in testing and validating the new generation of integrated hydrological models when considering many types and levels of observation data. Finally, a concluding analysis is performed that relates to all three themes of the thesis, describing some of the features of the CATHY_FT model, discussing key issues associated to its further development, and testing its physical and numerical behavior for both real and synthetic scenarios. This final stage of the thesis addresses the myriad challenges faced in accurately and efficiently resolving the difficult behavior of the advection-dispersion equation for subsurface solute transport, in properly handling the complex boundary conditions for solute interactions across the land surface, and generally in capturing process interactions and feedbacks between flow and transport phenomena in surface and subsurface environments.
Integrated numerical modeling; processes interactions; mass conservation; P1 Galerkin method; finite volumes method; Larson Niklasson velocity reconstruction; surface-subsurface coupling; seepage face boundary conditions; model testing and benchmarking; isotope tracer experiment
Numerical modeling of flow and solute transport phenomena in subsurface and coupled surface-subsurface hydrology / Scudeler, Carlotta. - (2016 Sep 29).
File in questo prodotto:
File Dimensione Formato  
Scudeler_Carlotta_thesis.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Non specificato
Dimensione 6.57 MB
Formato Adobe PDF
6.57 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3421912
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact