Fractional calculus is ”the theory of integrals and derivatives of arbitrary order, which unify and generalize the notions of integer-order differentiation and n-fold integration”. The idea of generalizing differential operators to a non-integer order, in particular to the order 1/2, first appears in the correspondence of Leibniz with L’Hopital (1695), Johann Bernoulli (1695), and John Wallis (1697) as a mere question or maybe even play of thoughts. In the following three hundred years a lot of mathematicians contributed to the fractional calculus: Laplace (1812), Lacroix (1812), Fourier (1822), Abel (1823-1826), Liouville (1832-1837), Riemann (1847), Grunwald (1867-1872), Letnikov (1868-1872), Sonin (1869), Laurent (1884), Heaviside (1892-1912), Weyl (1917), Davis (1936), Erde`lyi (1939-1965), Gelfand and Shilov (1959-1964), Dzherbashian (1966), Caputo (1969), and many others. Yet, it is only after the First Conference on Fractional Calculus and its applications that the fractional calculus becomes one of the most intensively developing areas of mathematical analysis. Recently, many mathematicians and applied researchers have tried to model real processes using the fractional calculus. This is because of the fact that the realistic modeling of a physical phenomenon does not depend only on the instant time, but also on the history of the previous time which can be successfully achieved by using fractional calculus. In other words, the nature of the definition of the fractional derivatives have provided an excellent instrument for the modeling of memory and hereditary properties of various materials and processes.

Il calcolo frazionario e` ”the theory of integrals and derivatives of arbitrary order, which unify and generalize the notions of integer-order differentiation and n-fold integration”. L’ idea di generalizzare operatori differenziali ad un ordine non intero, in particolare di ordine 1/2, compare per la prima volta in una corrispondenza di Leibniz con L’Hopital (1695), Johann Bernoulli (1695), e John Wallis (1697), come una semplice domanda o forse un gioco di pensieri. Nei successive trecento anni molti matematici hanno contribuito al calcolo frazionario: Laplace (1812), Lacroix (1812), di Fourier (1822), Abel (1823-1826), Liouville (1832-1837), Riemann (1847), Grunwald (1867-1872), Letnikov (1868-1872), Sonin (1869), Laurent (1884), Heaviside (1892-1912), Weyl (1917), Davis (1936), Erde`lyi (1939-1965), Gelfand e Shilov (1959-1964), Dzherbashian (1966), Caputo (1969), e molti altri. Eppure, è solo dopo la prima conferenza sul calcolo frazionario e le sue applicazioni che questo tema diventa una delle le aree più intensamente studiate dell’analisi matematica. Recentemente, molti matematici e ingegneri hanno cercato di modellare i processi reali utilizzando il calcolo frazionario. Questo a causa del fatto che spesso, la modellazione realistica di un fenomeno fisico non è locale nel tempo, ma dipende anche dalla storia, e questo comportamento può essere ben rappresentato attraverso modelli basati sul calcolo frazionario. In altre parole, la definizione dei derivata frazionaria fornisce un eccellente strumento per la modellazione della memoria e delle proprietà ereditarie di vari materiali e processi.

Fractional calculus: numerical methods and SIR models / Abdelsheed, Ismail Gad Ameen. - (2016 Dec).

Fractional calculus: numerical methods and SIR models

Abdelsheed, Ismail Gad Ameen
2016

Abstract

Il calcolo frazionario e` ”the theory of integrals and derivatives of arbitrary order, which unify and generalize the notions of integer-order differentiation and n-fold integration”. L’ idea di generalizzare operatori differenziali ad un ordine non intero, in particolare di ordine 1/2, compare per la prima volta in una corrispondenza di Leibniz con L’Hopital (1695), Johann Bernoulli (1695), e John Wallis (1697), come una semplice domanda o forse un gioco di pensieri. Nei successive trecento anni molti matematici hanno contribuito al calcolo frazionario: Laplace (1812), Lacroix (1812), di Fourier (1822), Abel (1823-1826), Liouville (1832-1837), Riemann (1847), Grunwald (1867-1872), Letnikov (1868-1872), Sonin (1869), Laurent (1884), Heaviside (1892-1912), Weyl (1917), Davis (1936), Erde`lyi (1939-1965), Gelfand e Shilov (1959-1964), Dzherbashian (1966), Caputo (1969), e molti altri. Eppure, è solo dopo la prima conferenza sul calcolo frazionario e le sue applicazioni che questo tema diventa una delle le aree più intensamente studiate dell’analisi matematica. Recentemente, molti matematici e ingegneri hanno cercato di modellare i processi reali utilizzando il calcolo frazionario. Questo a causa del fatto che spesso, la modellazione realistica di un fenomeno fisico non è locale nel tempo, ma dipende anche dalla storia, e questo comportamento può essere ben rappresentato attraverso modelli basati sul calcolo frazionario. In altre parole, la definizione dei derivata frazionaria fornisce un eccellente strumento per la modellazione della memoria e delle proprietà ereditarie di vari materiali e processi.
dic-2016
Fractional calculus is ”the theory of integrals and derivatives of arbitrary order, which unify and generalize the notions of integer-order differentiation and n-fold integration”. The idea of generalizing differential operators to a non-integer order, in particular to the order 1/2, first appears in the correspondence of Leibniz with L’Hopital (1695), Johann Bernoulli (1695), and John Wallis (1697) as a mere question or maybe even play of thoughts. In the following three hundred years a lot of mathematicians contributed to the fractional calculus: Laplace (1812), Lacroix (1812), Fourier (1822), Abel (1823-1826), Liouville (1832-1837), Riemann (1847), Grunwald (1867-1872), Letnikov (1868-1872), Sonin (1869), Laurent (1884), Heaviside (1892-1912), Weyl (1917), Davis (1936), Erde`lyi (1939-1965), Gelfand and Shilov (1959-1964), Dzherbashian (1966), Caputo (1969), and many others. Yet, it is only after the First Conference on Fractional Calculus and its applications that the fractional calculus becomes one of the most intensively developing areas of mathematical analysis. Recently, many mathematicians and applied researchers have tried to model real processes using the fractional calculus. This is because of the fact that the realistic modeling of a physical phenomenon does not depend only on the instant time, but also on the history of the previous time which can be successfully achieved by using fractional calculus. In other words, the nature of the definition of the fractional derivatives have provided an excellent instrument for the modeling of memory and hereditary properties of various materials and processes.
Fractional calculus, Fractional differential equation of Caputo type, Fractional linear multistep methods, Fractional backward difference methods, Fractional-order SIR models.
Fractional calculus: numerical methods and SIR models / Abdelsheed, Ismail Gad Ameen. - (2016 Dec).
File in questo prodotto:
File Dimensione Formato  
Abdelsheed_Ismail_Thesis.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Non specificato
Dimensione 1.56 MB
Formato Adobe PDF
1.56 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3422267
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact