This project is carried out within the context of nano medicine, which is the branch of research that tries to implement nanotechnology for therapeutic applications. The specific target of this project was the development of artificial multivalent systems for the selective recognition of liver cancer cells. Multivalency, which is very common in nature, relies on the ability of a system to develop multiple interactions with a target, resulting in a very high overall binding strength. Among various synthetic multivalent systems available (dendrimers, micelles, liposomes, …) it was chosen to use gold nanoparticles as a multivalent scaffold. These are small cluster of gold atoms with dimensions that typically vary between 1 and 20 nanometers, which can be covered with a monolayer of organic molecules. The monolayer is spontaneously formed upon the addition of molecules able to form a stable bond with the gold surface. Terminal functional groups on these molecules are exposed to the solvent and can be used for recognition or catalytic purposes. For the formation of the monolayer, it was relied on the gold-sulfur interaction, which is sufficiently strong to provide for stability under physiologically relevant conditions. The particular research target of this project was the development of ‘universal’ nanoparticles, which are intended as a class of monolayer protected Au nanoparticles that can be further functionalized after their synthesis and purification. Here, the key issue is the development of a post-functionalization reaction compatible with the stability of the nanoparticles. For this purpose the liver cancer cells form an attractive biological target as it is known that multiple copies of the preS1 peptide bind strongly to the transmembrane protein SCCA localized on the surface of the cells. A first approach was aimed at obtaining monolayer protected gold nanoparticles that could be further functionalized through covalent bond formation. For that purpose, gold nanoparticles coated with aldehyde-terminating thiols were investigated, since the aldehyde-group is perfectly suited for covalent imine-bond formation with amines. As the aldehyde group is prone to nucleophilic attack by thiols, this approach critically relies on the use of appropriate protecting groups. At first, aromatic aldehydes, protected as dimethyl acetal, were studied, since these form particularly stable imines. Regrettably, after monolayer formation it appeared impossible to remove the aldehyde protecting group without destroying the nanoparticle system. This problem found its origin in the excessive stability of the protecting group owing to the presence of a nitro-group in para-position. However, removal of the nitro-group created the opposite problem of a protecting group with too low stability unable to protect the aldehyde against nucleophilic attack. Subsequently, it was tried to synthesize nanoparticles containing aliphatic aldehydes as end groups, but in this case only insoluble products were obtained. Identical problems were obtained when it was tried to oxidize vicinal diols to aldehydes. Abandoning the aldehyde pathway, it was tried to perform post-functionalization reactions through a nucleophilic attack of amines on gold nanoparticles coated with brominated thiols. Also these attempts yielded exclusively insolubile products. Finally, also the use of carboxylic acid as a reactive group proved unsuccessful for the same reason, independent whether the carboxylic acid was used in a mixed monolayer or not. The low success of the covalent post-functionalization approach led us to consider a noncovalent alternative, relying on the use of electrostatic interactions between small oligoanions and a cationic monolayer. For this purpose, gold nanoparticles coated with a cationic monolayer composed of thiols terminating with ammonium of TACN∙Zn(II) groups were used. The interaction between oligoanionic peptide sequences was studied using fluorescence, taking advantage of the fact that gold nanoparticles quench the fluorescence of bound fluorophores. In order to study the possibility of forming a heterofunctionalized surface on top of the monolayer, two probes were prepared consisting of either coumarin 343 or coumarin 2 linked to an oligopeptide composed of three aspartic acids. These fluorophores were chosen for their ability to give fluorescence resonance energy transfer (FRET) when in close proximity. In the experiments, the fluorescence emission of the receiver (cum 343) was measured upon exciting the donor (cum2). This was done for various ratios of the probes at a constant surface saturation concentration of the monolayer surface. From these studies it emerged that, when anchored on the cationic surface, the probes are able to communicate with each other. In the absence of gold nanoparticles, or in the presence of a large excess of ATP, a strong competitor for binding, FRET was not detected. This provides unequivocal evidence for the possibility of creating a multivalent heterofunctionalized surfaces relying on a double self-assembly strategy. The final part of the research project was then dedicated to the development of a peptide-nanoparticle conjugate using the developed strategy. The peptide pre S1 (21-47) is known for its ability to recognize specifically SCCA, a transmembrane protein overexpressed in cancerous hepatocytes. The first studies were aimed at studying the possibility of ligating multiple copies of the preS1 peptide to the surface of cationic gold nanoparticles. The difference in binding affinity of preS1 and preS1 equipped with an anionic triAsp tail were studied by a series of experiments, relying on direct fluorescence titrations (λexcitation = 280, λemission = 360), fluorescence displacement studies (λeccitazione = 305, λemissione = 370), and inhibition studies of TACN∙Zn(II) catalysed hydrolysis (measuring the release of p-nitrophenate, absorbance 400 nm). Alll these studies not only confirmed the possibility of forming a multivalent peptide-nanoparticle structure through self-assembly, but also pointed to a slight stabilizing effect of the triAsp anionic tail. Next the ability of the system to interact with SCCA was investigated.From literature studies it is known that the preS1 peptide in tetrameric form has a higher affinity for SCCA compared to the single peptide. It was thus hypothesized that the presence of SCCA would cause an enhanced stabilization of the nanoparticle-peptide complex. Regrettably, from fluorescence displacement studies it was impossible to obtain evidence that this was indeed the case. No difference in stability was observed for the same system in the presence or absence of SCCA. Since the assay was not conclusive, the stability of the system was studied using a series of other analytical techniques. DLS measurements provided the increase of hydrodynamic radius of the system as consequence of complex formation, but aggregation phenomena made these data difficult to interpret. SPR analysis was used to quantify the strength of interaction using the variation of the surface plasmon resonance band of a functionalized gold chip. In this case, unspecific binding interactions of the nanoparticles and the dextran layer of the gold chip prevented an analysis of the binding event. In conclusion, the research described in this thesis has led towards the development of multivalent peptide-nanoparticle conjugates that can be obtained through a hierarchical self-assembly process. In the first step, an organic monolayer is spontaneously formed on the surface of gold nanoparticles. Subsequently, oligoanionic peptide sequences spontaneously cover the surface through electrostatic interactions with the monolayer. The formation of multivalent peptide surfaces has been demonstrated, but their effective application in multivalent recognition has proven difficult for the lack of an appropriate analytical readout system

Questo progetto si inquadra nell’ambito della nanomedicina. Sfruttando sistemi multivalenti esso si propone di ottenere nanostrutture che siano in grado di riconoscere specificatamente le cellule tumorali epatiche. La multivalenza, molto frequente in natura, si basa sulla capacità di un sistema di instaurare molteplici interazioni deboli, ottenendo un’interazione complessiva superiore rispetto al singolo legame forte. Essa si presta ad essere utilizzata in applicazioni pratiche come il riconoscimento molecolare e la catalisi. Tra i vari sistemi multivalenti artificiali utilizzabili (dendrimeri, micelle, liposomi …), la scelta è ricaduta sulle nanoparticelle d’oro: esse sono piccoli nuclei di atomi d'oro con diametri che tipicamente variano da 1 a 20 nanometri, che possono facilmente essere funzionalizzate tramite l'autoassemblaggio di un monostrato di molecole sulla superficie. Tale monostrato può portare sulla superficie esterna gruppi funzionali di interesse, dotati di capacità catalitica o di riconoscimento. Per legare le molecole del monostrato organico ai nuclei d’oro è stata utilizzata l’interazione oro-zolfo; lo zolfo, infatti, lega l’oro con un legame più forte rispetto alla maggior parte degli altri elementi, come azoto e fosforo. La ricerca descritta in questa tesi si è focalizzata sull’ottenimento di un sistema nanoparticellare “universale”, cioè un sistema che si presta ad una post-funzionalizzazione dopo la sintesi e la purificazione. Tale post-funzionalizzabile deve essere compatibile con la sopravvivenza delle nanoparticelle stesse, permettendo di assemblanrvi un monostrato misto sulla sua superficie. L’ottenimento di un metodo di riconoscimento per le cellule tumorali epatiche sarebbe stato un ottimo campo di prova per verificare in tal senso le capacità del sistema. Innanzitutto è stata verificata la possibilità di ottenere nanoparticelle funzionalizzabili tramite legami covalenti. Per farlo, sono state sintetizzate AuNPs ricoperte con tioli dotati di gruppi aldeidici all’estremità, in grado di reagire in modo quantitativo con ammine tramite la formazione di legami imminici.. I gruppi aldeidici, però, sono facilmente soggetti agli attacchi nucleofili da parte dei tioli a livello del loro carbonile elettrofilo. È stato quindi necessario trovare un sistema di protezione delle aldeidi da rimuovere dopo la sintesi. Le prime aldeidi erano aromatiche, protette in forma di acetale metilico, scelte per la loro capacità di formare immine con alta stabilità termodinamica. Purtroppo non sono stati superati gli ostacoli della deprotezione del gruppo protettore dovuto ad un’eccessivamente stabilità. Questa alta stabilità era in parte dovuta alla presenza di un gruppo nitro in posizione para rispetto all’aldeide, inserito per aumentarne la reattività. Rinunciando a tale gruppo frunzionale, invece, la protezione stessa è risultata troppo labile, incapace di impedire la polimerizzazione dei tioli prima dell’ottenimento delle NPs. Si è quindi passati all’utilizzo di aldeidi alifatiche. Si è provato a sintetizzare nanoparticelle ricoperte con tioli la cui aldeide terminale fosse protetta come dietilacetale, ma si è andati incontro a numerosi problemi di insolubilità. L’utilizzo di dioli ossidabili ad aldeidi non ha dato migliori risultati. Cambiando approccio, si è cercato di sfruttare la sostituzione nucleofila su AuNPs ricoperte con tioli bromurati. Purtroppo, la post-funzionalizzazione con ammine ha avuto come risultati la sola formazione di prodotti insolubili. Infine, la sintesi di nanoparticelle ricoperte con tioli aventi, nell’estremità esterna del monostrato, acidi carbossilici ha dato ulteriori problemi di solubilità, fossero essi in monostrati misti con tioli alchilici oppure no. Visto l’insuccesso della via covalente ci si è successivamente concentrati sull’utilizzo di interazioni elettrostatiche per la funzionalizzazione di AuNPs. Sono state sintetizzate nanoparticelle ricoperte con un monostrato cationico, composto da tioli dotati di gruppi ammonici oppure di gruppi TACN∙Zn(II). Esse sono state usate come AuNPs “universali”, per poi essere coperte con molecole oligoanioniche tramite la formazione di complessi ad alta affinitá. Il metodo scelto per la rilevazione della formazione di questi complessi è stata la fluorescenza, sfruttando il principio secondo il quale una sonda fluorescente vede smorzata la propria emissione in prossimità di una nanoparticelle d'oro. Come sonde sono state scelte cumarina 343 (λeccitazione 450, λemissione 492) e cumarina 2 (λeccitazione 353, λemissione 450), entrambe legate a un oligopeptide anionico formato da tre acidi aspartici (TriAsp-Cum343 e TriAsp-Cum2). Con esse è stata studiata la possibilità di formare un secondo monostrato eterofunzionalizzato, sfruttando il fenomeno FRET. Esso si basa sulla capacità di due fluorofori di comunicare tra loro quando si trovano vicini. Negli esperimenti effettuati, è stata registrata l’emissione della ricevente (cum343) eccitando solamente la donatrice (cum2). Questo è stato fatto in presenza di diversi rapporti percentuali tra le due molecole, alla concentrazione di saturazione del monostrato. Gli esperimenti sono stati condotti anche in presenza di un grande eccesso di ATP, oppure in assenza di nanoparticelle cationiche. Da queste prove è emerso che, quando co-localizzate sullo stesso monostrato, le due sonde fluorescenti sono in grado di generare un segnale FRET. Quando invece sono libere in soluzione, per assenza di nanoparticelle o perché in presenza di un eccesso del competitore ATP, non è stato osservato il medesimo effetto. Il risultato ottenuto ha mostrato che, tramite interazioni elettrostatiche, è possibile assemblare un monostrato eterofunzionalizzato su nanoparticelle “universali” pre-sintetizzate. A questo punto si è proceduto allo sviluppo di un sistema nanoparticellare coperto con il peptide preS1 per il riconoscimento della proteina SCCA. Il peptide preS1 è noto per la capacità di riconoscere specificatamente SCCA, una proteina di membrana sovraespressa negli epatociti cancerosi. Innanzitutto è stato verificato quale fosse la diversa affinità per le AuNPs-TACN∙Zn(II) da parte del peptide tal quale piuttosto che legato all’ancora anionica TriAsp4-. Sono state effettuate prove di fluorescenza diretta (λeccitazione = 280, λemissione = 360, smorzamento del triptofano), fluorescenza indiretta (λeccitazione = 305, λemissione = 370, spiazzamento F-ATP) e di inibizione della catalisi di HPNP operata dai gruppi TACN∙Zn(II) (con liberazione di p-nitro-fenato, assorbanza 400 nm). Tutti e tre gli esperimenti hanno dimostrato la capacità di TriAsp-preS1 di formare un complesso polivalente con le nanoparticelle. È stato osservato che la presenza della sequenza TriAsp ha causato un piccolo miglioramento dell’affinità rispetto al peptide privo dell’ancora anionica. Successivamente è stato verificato il legame del sistema nanoparticella-peptide con la proteina SCCA. Il peptide preS1, quando si trova in forma tetramerica, è in grado di legare con maggiore affinità la proteina SCCA. È stato quindi teorizzato che la presenza della proteina SCCA dovesse stabilizzare il nanosistema composto da nanoparticelle e preS1. Purtroppo non sono state rilevate grandi differenze di stabilità in presenza o in assenza di SCCA, sia per il peptide preS1 che per TriAsp-preS1. Il metodo di analisi basato su studi di spiazzamento è stato quindi accantonato, poiché non garantiva una valida valutazione dell’interazione. Sono stati usati altri metodi per verificare l’interazione del sistema nanoparticella-peptide con la proteina. Tramite analisi DLS è stato visualizzato l’aumento di volume delle nanoparticelle a seguito del legame col peptide prima e con la proteina poi, ma fenomeni di aggregazione hanno reso poco attendibili le misurazioni. Analisi SPR, invece, miravano a quantificare l’intensità dell’interazione tra il sistema nanoparticella-peptide e la proteina SCCA sfruttando la variazione della banda plasmonica superficiale. Questo non è stato possibile a causa di interazioni aspecifiche tra le nanoparticelle e il supporto di destrano del sistema di analisi. Il tempo a disposizione non ha poi permesso di mettere a punto un protocollo di analisi adeguato

Sintesi di nanoparticelle per il riconoscimento selettivo dei tessuti / Graziani, Matteo. - (2012 Jan 30).

Sintesi di nanoparticelle per il riconoscimento selettivo dei tessuti

Graziani, Matteo
2012

Abstract

Questo progetto si inquadra nell’ambito della nanomedicina. Sfruttando sistemi multivalenti esso si propone di ottenere nanostrutture che siano in grado di riconoscere specificatamente le cellule tumorali epatiche. La multivalenza, molto frequente in natura, si basa sulla capacità di un sistema di instaurare molteplici interazioni deboli, ottenendo un’interazione complessiva superiore rispetto al singolo legame forte. Essa si presta ad essere utilizzata in applicazioni pratiche come il riconoscimento molecolare e la catalisi. Tra i vari sistemi multivalenti artificiali utilizzabili (dendrimeri, micelle, liposomi …), la scelta è ricaduta sulle nanoparticelle d’oro: esse sono piccoli nuclei di atomi d'oro con diametri che tipicamente variano da 1 a 20 nanometri, che possono facilmente essere funzionalizzate tramite l'autoassemblaggio di un monostrato di molecole sulla superficie. Tale monostrato può portare sulla superficie esterna gruppi funzionali di interesse, dotati di capacità catalitica o di riconoscimento. Per legare le molecole del monostrato organico ai nuclei d’oro è stata utilizzata l’interazione oro-zolfo; lo zolfo, infatti, lega l’oro con un legame più forte rispetto alla maggior parte degli altri elementi, come azoto e fosforo. La ricerca descritta in questa tesi si è focalizzata sull’ottenimento di un sistema nanoparticellare “universale”, cioè un sistema che si presta ad una post-funzionalizzazione dopo la sintesi e la purificazione. Tale post-funzionalizzabile deve essere compatibile con la sopravvivenza delle nanoparticelle stesse, permettendo di assemblanrvi un monostrato misto sulla sua superficie. L’ottenimento di un metodo di riconoscimento per le cellule tumorali epatiche sarebbe stato un ottimo campo di prova per verificare in tal senso le capacità del sistema. Innanzitutto è stata verificata la possibilità di ottenere nanoparticelle funzionalizzabili tramite legami covalenti. Per farlo, sono state sintetizzate AuNPs ricoperte con tioli dotati di gruppi aldeidici all’estremità, in grado di reagire in modo quantitativo con ammine tramite la formazione di legami imminici.. I gruppi aldeidici, però, sono facilmente soggetti agli attacchi nucleofili da parte dei tioli a livello del loro carbonile elettrofilo. È stato quindi necessario trovare un sistema di protezione delle aldeidi da rimuovere dopo la sintesi. Le prime aldeidi erano aromatiche, protette in forma di acetale metilico, scelte per la loro capacità di formare immine con alta stabilità termodinamica. Purtroppo non sono stati superati gli ostacoli della deprotezione del gruppo protettore dovuto ad un’eccessivamente stabilità. Questa alta stabilità era in parte dovuta alla presenza di un gruppo nitro in posizione para rispetto all’aldeide, inserito per aumentarne la reattività. Rinunciando a tale gruppo frunzionale, invece, la protezione stessa è risultata troppo labile, incapace di impedire la polimerizzazione dei tioli prima dell’ottenimento delle NPs. Si è quindi passati all’utilizzo di aldeidi alifatiche. Si è provato a sintetizzare nanoparticelle ricoperte con tioli la cui aldeide terminale fosse protetta come dietilacetale, ma si è andati incontro a numerosi problemi di insolubilità. L’utilizzo di dioli ossidabili ad aldeidi non ha dato migliori risultati. Cambiando approccio, si è cercato di sfruttare la sostituzione nucleofila su AuNPs ricoperte con tioli bromurati. Purtroppo, la post-funzionalizzazione con ammine ha avuto come risultati la sola formazione di prodotti insolubili. Infine, la sintesi di nanoparticelle ricoperte con tioli aventi, nell’estremità esterna del monostrato, acidi carbossilici ha dato ulteriori problemi di solubilità, fossero essi in monostrati misti con tioli alchilici oppure no. Visto l’insuccesso della via covalente ci si è successivamente concentrati sull’utilizzo di interazioni elettrostatiche per la funzionalizzazione di AuNPs. Sono state sintetizzate nanoparticelle ricoperte con un monostrato cationico, composto da tioli dotati di gruppi ammonici oppure di gruppi TACN∙Zn(II). Esse sono state usate come AuNPs “universali”, per poi essere coperte con molecole oligoanioniche tramite la formazione di complessi ad alta affinitá. Il metodo scelto per la rilevazione della formazione di questi complessi è stata la fluorescenza, sfruttando il principio secondo il quale una sonda fluorescente vede smorzata la propria emissione in prossimità di una nanoparticelle d'oro. Come sonde sono state scelte cumarina 343 (λeccitazione 450, λemissione 492) e cumarina 2 (λeccitazione 353, λemissione 450), entrambe legate a un oligopeptide anionico formato da tre acidi aspartici (TriAsp-Cum343 e TriAsp-Cum2). Con esse è stata studiata la possibilità di formare un secondo monostrato eterofunzionalizzato, sfruttando il fenomeno FRET. Esso si basa sulla capacità di due fluorofori di comunicare tra loro quando si trovano vicini. Negli esperimenti effettuati, è stata registrata l’emissione della ricevente (cum343) eccitando solamente la donatrice (cum2). Questo è stato fatto in presenza di diversi rapporti percentuali tra le due molecole, alla concentrazione di saturazione del monostrato. Gli esperimenti sono stati condotti anche in presenza di un grande eccesso di ATP, oppure in assenza di nanoparticelle cationiche. Da queste prove è emerso che, quando co-localizzate sullo stesso monostrato, le due sonde fluorescenti sono in grado di generare un segnale FRET. Quando invece sono libere in soluzione, per assenza di nanoparticelle o perché in presenza di un eccesso del competitore ATP, non è stato osservato il medesimo effetto. Il risultato ottenuto ha mostrato che, tramite interazioni elettrostatiche, è possibile assemblare un monostrato eterofunzionalizzato su nanoparticelle “universali” pre-sintetizzate. A questo punto si è proceduto allo sviluppo di un sistema nanoparticellare coperto con il peptide preS1 per il riconoscimento della proteina SCCA. Il peptide preS1 è noto per la capacità di riconoscere specificatamente SCCA, una proteina di membrana sovraespressa negli epatociti cancerosi. Innanzitutto è stato verificato quale fosse la diversa affinità per le AuNPs-TACN∙Zn(II) da parte del peptide tal quale piuttosto che legato all’ancora anionica TriAsp4-. Sono state effettuate prove di fluorescenza diretta (λeccitazione = 280, λemissione = 360, smorzamento del triptofano), fluorescenza indiretta (λeccitazione = 305, λemissione = 370, spiazzamento F-ATP) e di inibizione della catalisi di HPNP operata dai gruppi TACN∙Zn(II) (con liberazione di p-nitro-fenato, assorbanza 400 nm). Tutti e tre gli esperimenti hanno dimostrato la capacità di TriAsp-preS1 di formare un complesso polivalente con le nanoparticelle. È stato osservato che la presenza della sequenza TriAsp ha causato un piccolo miglioramento dell’affinità rispetto al peptide privo dell’ancora anionica. Successivamente è stato verificato il legame del sistema nanoparticella-peptide con la proteina SCCA. Il peptide preS1, quando si trova in forma tetramerica, è in grado di legare con maggiore affinità la proteina SCCA. È stato quindi teorizzato che la presenza della proteina SCCA dovesse stabilizzare il nanosistema composto da nanoparticelle e preS1. Purtroppo non sono state rilevate grandi differenze di stabilità in presenza o in assenza di SCCA, sia per il peptide preS1 che per TriAsp-preS1. Il metodo di analisi basato su studi di spiazzamento è stato quindi accantonato, poiché non garantiva una valida valutazione dell’interazione. Sono stati usati altri metodi per verificare l’interazione del sistema nanoparticella-peptide con la proteina. Tramite analisi DLS è stato visualizzato l’aumento di volume delle nanoparticelle a seguito del legame col peptide prima e con la proteina poi, ma fenomeni di aggregazione hanno reso poco attendibili le misurazioni. Analisi SPR, invece, miravano a quantificare l’intensità dell’interazione tra il sistema nanoparticella-peptide e la proteina SCCA sfruttando la variazione della banda plasmonica superficiale. Questo non è stato possibile a causa di interazioni aspecifiche tra le nanoparticelle e il supporto di destrano del sistema di analisi. Il tempo a disposizione non ha poi permesso di mettere a punto un protocollo di analisi adeguato
30-gen-2012
This project is carried out within the context of nano medicine, which is the branch of research that tries to implement nanotechnology for therapeutic applications. The specific target of this project was the development of artificial multivalent systems for the selective recognition of liver cancer cells. Multivalency, which is very common in nature, relies on the ability of a system to develop multiple interactions with a target, resulting in a very high overall binding strength. Among various synthetic multivalent systems available (dendrimers, micelles, liposomes, …) it was chosen to use gold nanoparticles as a multivalent scaffold. These are small cluster of gold atoms with dimensions that typically vary between 1 and 20 nanometers, which can be covered with a monolayer of organic molecules. The monolayer is spontaneously formed upon the addition of molecules able to form a stable bond with the gold surface. Terminal functional groups on these molecules are exposed to the solvent and can be used for recognition or catalytic purposes. For the formation of the monolayer, it was relied on the gold-sulfur interaction, which is sufficiently strong to provide for stability under physiologically relevant conditions. The particular research target of this project was the development of ‘universal’ nanoparticles, which are intended as a class of monolayer protected Au nanoparticles that can be further functionalized after their synthesis and purification. Here, the key issue is the development of a post-functionalization reaction compatible with the stability of the nanoparticles. For this purpose the liver cancer cells form an attractive biological target as it is known that multiple copies of the preS1 peptide bind strongly to the transmembrane protein SCCA localized on the surface of the cells. A first approach was aimed at obtaining monolayer protected gold nanoparticles that could be further functionalized through covalent bond formation. For that purpose, gold nanoparticles coated with aldehyde-terminating thiols were investigated, since the aldehyde-group is perfectly suited for covalent imine-bond formation with amines. As the aldehyde group is prone to nucleophilic attack by thiols, this approach critically relies on the use of appropriate protecting groups. At first, aromatic aldehydes, protected as dimethyl acetal, were studied, since these form particularly stable imines. Regrettably, after monolayer formation it appeared impossible to remove the aldehyde protecting group without destroying the nanoparticle system. This problem found its origin in the excessive stability of the protecting group owing to the presence of a nitro-group in para-position. However, removal of the nitro-group created the opposite problem of a protecting group with too low stability unable to protect the aldehyde against nucleophilic attack. Subsequently, it was tried to synthesize nanoparticles containing aliphatic aldehydes as end groups, but in this case only insoluble products were obtained. Identical problems were obtained when it was tried to oxidize vicinal diols to aldehydes. Abandoning the aldehyde pathway, it was tried to perform post-functionalization reactions through a nucleophilic attack of amines on gold nanoparticles coated with brominated thiols. Also these attempts yielded exclusively insolubile products. Finally, also the use of carboxylic acid as a reactive group proved unsuccessful for the same reason, independent whether the carboxylic acid was used in a mixed monolayer or not. The low success of the covalent post-functionalization approach led us to consider a noncovalent alternative, relying on the use of electrostatic interactions between small oligoanions and a cationic monolayer. For this purpose, gold nanoparticles coated with a cationic monolayer composed of thiols terminating with ammonium of TACN∙Zn(II) groups were used. The interaction between oligoanionic peptide sequences was studied using fluorescence, taking advantage of the fact that gold nanoparticles quench the fluorescence of bound fluorophores. In order to study the possibility of forming a heterofunctionalized surface on top of the monolayer, two probes were prepared consisting of either coumarin 343 or coumarin 2 linked to an oligopeptide composed of three aspartic acids. These fluorophores were chosen for their ability to give fluorescence resonance energy transfer (FRET) when in close proximity. In the experiments, the fluorescence emission of the receiver (cum 343) was measured upon exciting the donor (cum2). This was done for various ratios of the probes at a constant surface saturation concentration of the monolayer surface. From these studies it emerged that, when anchored on the cationic surface, the probes are able to communicate with each other. In the absence of gold nanoparticles, or in the presence of a large excess of ATP, a strong competitor for binding, FRET was not detected. This provides unequivocal evidence for the possibility of creating a multivalent heterofunctionalized surfaces relying on a double self-assembly strategy. The final part of the research project was then dedicated to the development of a peptide-nanoparticle conjugate using the developed strategy. The peptide pre S1 (21-47) is known for its ability to recognize specifically SCCA, a transmembrane protein overexpressed in cancerous hepatocytes. The first studies were aimed at studying the possibility of ligating multiple copies of the preS1 peptide to the surface of cationic gold nanoparticles. The difference in binding affinity of preS1 and preS1 equipped with an anionic triAsp tail were studied by a series of experiments, relying on direct fluorescence titrations (λexcitation = 280, λemission = 360), fluorescence displacement studies (λeccitazione = 305, λemissione = 370), and inhibition studies of TACN∙Zn(II) catalysed hydrolysis (measuring the release of p-nitrophenate, absorbance 400 nm). Alll these studies not only confirmed the possibility of forming a multivalent peptide-nanoparticle structure through self-assembly, but also pointed to a slight stabilizing effect of the triAsp anionic tail. Next the ability of the system to interact with SCCA was investigated.From literature studies it is known that the preS1 peptide in tetrameric form has a higher affinity for SCCA compared to the single peptide. It was thus hypothesized that the presence of SCCA would cause an enhanced stabilization of the nanoparticle-peptide complex. Regrettably, from fluorescence displacement studies it was impossible to obtain evidence that this was indeed the case. No difference in stability was observed for the same system in the presence or absence of SCCA. Since the assay was not conclusive, the stability of the system was studied using a series of other analytical techniques. DLS measurements provided the increase of hydrodynamic radius of the system as consequence of complex formation, but aggregation phenomena made these data difficult to interpret. SPR analysis was used to quantify the strength of interaction using the variation of the surface plasmon resonance band of a functionalized gold chip. In this case, unspecific binding interactions of the nanoparticles and the dextran layer of the gold chip prevented an analysis of the binding event. In conclusion, the research described in this thesis has led towards the development of multivalent peptide-nanoparticle conjugates that can be obtained through a hierarchical self-assembly process. In the first step, an organic monolayer is spontaneously formed on the surface of gold nanoparticles. Subsequently, oligoanionic peptide sequences spontaneously cover the surface through electrostatic interactions with the monolayer. The formation of multivalent peptide surfaces has been demonstrated, but their effective application in multivalent recognition has proven difficult for the lack of an appropriate analytical readout system
nanoparticelle/nanoparticles, oro/gold, peptidi/peptide, fluorescenza/fluorescence, FRET, SCCA, preS1
Sintesi di nanoparticelle per il riconoscimento selettivo dei tessuti / Graziani, Matteo. - (2012 Jan 30).
File in questo prodotto:
File Dimensione Formato  
Tesi_Dottorato_Graziani.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Non specificato
Dimensione 4.63 MB
Formato Adobe PDF
4.63 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3422504
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact