Introduction: Stem cell biology has received much interest because of its potential in both therapeutic application and in vitro modeling of diseases. In particular embryonic stem cells have good proliferative and differentiative abilities, but their use is still associated to ethical concerns and problems related to their teratogenic potential. Adult stem cells have also been described to be pluripotent both in vitro and in vivo. However, their use is limited because they are difficult to isolate and expand, particularly in a clinical setting. In this scenario, it would be advantageous to obtain a cell population with high selfrenewal and differentiation capacities, without ethical problems. In 2007 our group described that amniotic fluid stem (AFS) cells could be derived selecting amniocytes using c-Kit antibody. AFS cells have clonogenic capability and can be directed into a wide range of cell types representing the three primary embryonic lineages. Aim: This work aiming at characterize the myogenic potential of mouse AFS cells using a mouse model of spinal muscular atrophy and in particular at analyzing their ability to differentiate into satellite cells and colonize the muscle stem cell niche. Materials and Methods: Mouse AFS cells were obtained by amniocentesis and selected for the marker c-Kit with immunomagnetic beads. Freshly isolated AFS cells were analyzed for the expression of different markers (CD90, CD45, CD44, CD34, CD31, Flk1, SCA1, CD105) by flow cytometry and the expression of Oct4, Sox2, c-Myc, Klf4 and Sca-1 by qRT-PCR at different embryonic stages. For the treatment of HSA-Cre, SmnF7/F7 mutant mice, GFP+ AFS cells were injected via the tail vein and animals were sacrificed one and fifteen months after transplantation. Clinical aspects were observed and analyzed after transplantation to evaluate AFS cells’ effects. Several muscles were stained with hematoxylin and eosin, Masson’s trichrome and analyzed by immunofluorescence with anti-GFP and anti-dystrophin antibodies. To demonstrate the ability of AFS cells to replenish the muscle niche, staining for satellite cell markers and secondary transplantation were performed. The myogenic potential of AFS cells was also evaluated with transplantation after in vitro expansion. Results: Mouse AFS cell number changes during the course of gestation. At E12.5 these cells express hematopoietic markers (CD45, CD34, SCA1), mesenchymal markers (CD90, CD105) together with Flk1, CD31 and CD44. Gene expression analysis showed that mouse AFS cells express at low levels Oct4 and Sox2 and at high levels c-Myc and Klf4, whereas they are negative for the expression of myogenic genes. Mild muscular mutant HSA-Cre, SmnF7/F7 mice die at the age of 10 months and show evident clinical complications such as kyphosis and muscle shrinkage. After transplantation with GFP+ AFS or bone marrow (BM) cells mice survival rate increased by 75% and 50% respectively. Animals treated with AFS cells recovered more than 75% of force compared to the untreated. One month after transplantation, muscles obtained from AFS-treated mice displayed 37% of GFP+ fibers, with very low number of regenerating myofibers (<1%) and normal dystrophin expression. Fifteen months after transplantation BM-treated mice displayed a high number of central nucleated fibers and consistent infiltration of interstitial tissue and no GFP+ myofibers, while AFS-treated mice had a normalized phenotype, close to the same age WT mice, and 58% of the myofibers were GFP+. Similar results were obtained with transplantation of mouse AFS cells expanded in culture. Discussion: Mouse AFS cells are a heterogeneous population, and their phenotype changes during the course of gestation. At E12.5 they express mesenchymal, hematopoietic and endothelial markers, but most importantly don not express myogenic factors, indicating that no myogenic progenitor cells are present in this stem cell population. When injected in a muscular mutant mouse model, AFS cells showed a myogenic potential, even after long-term transplantation, suggesting an interesting therapeutic potential. They indeed were able to differentiate into satellite cells localizing in the muscle stem cell niche and expressing Pax7, a7integrin and SM/c-2.6, exclusively markers of satellite cell population. Moreover, AFS cells could contribute to the formation of new myofibers even after in vitro expansion.

Introduzione: Negli ultimi anni lo studio delle cellule staminali ha suscitato molto interesse, sia per il grande potenziale di queste cellule nelle terapie e applicazioni cliniche, sia come modello di studio in vitro per diversi tipi di malattie. In particolare, le cellule staminali embrionali hanno una elevata capacità proliferativa e di differenziazione, ma il loro utilizzo è ancora associato a problematiche etiche. Anche le cellule staminali adulte possiedono grandi potenzialità differenziative sia in vitro che in vivo, tuttavia il loro utilizzo è limitato in quanto difficili da isolare ed espandere, soprattutto in ambito clinico. In questo scenario sarebbe vantaggioso poter ottenere una popolazione di cellule con elevata capacità di proliferazione e differenziazione, senza dover affrontare però problemi di tipo etico. Nel 2007 il nostro gruppo ha isolato una popolazione di cellule staminali dal liquido amniotico (cellule AFS), utilizzando come marcatore il recettore c-Kit. Queste cellule hanno capacità clonogenica e possono essere dirette a differenziare in una vasta gamma di tipi cellulari appartenenti a tutti e tre i foglietti germinativi. Obiettivo: Questo lavoro mira a caratterizzare il potenziale miogenico delle cellule staminali del liquido amniotico di topo utilizzando un modello murino di atrofia spinale muscolare. In particolare è volto ad analizzare la capacità delle cellule AFS di dare origine a cellule staminali muscolari e colonizzare la nicchia staminale del muscolo scheletrico. Materiali e Metodi: Le cellule AFS sono state ottenute mediante amniocentesi e selezionate per la positività al marcatore c-kit con metodo immmunomagnetico. Appena isolate le cellule AFS sono state analizzate per l'espressione di diversi marcatori (CD90, CD45, CD44, CD34, CD31, Flk1, SCA1, CD105) tramite citometria a flusso; inoltre, attraverso qRT-PCR è stata analizzata l'espressione di Oct4, Sox2, c-Myc, Klf4 e Sca-1 delle cellule AFS isolate a diversi stadi embrionali. Per la terapia di topi transgenici HSA-Cre, SmnF7/F7, le cellule AFS GFP+ sono state iniettate per via sistemica attraverso la vena caudale; gli animali sono stati poi sacrificati a uno e a quindici mesi dopo il trapianto. Sono stati osservati e analizzati alcuni parametri clinici per valutare l’effetto del trapianto cellulare. Diversi muscoli sono stati raccolti ed analizzati con ematossilina e eosina, tricromica di Masson e mediante immunofluorescenza con anticorpi anti-GFP e anti-distrofina. Per dimostrare la capacità delle cellule AFS di colonizzare la nicchia staminale del muscolo, sono state eseguite delle immunofluorescenze per i marcatori specifici delle cellule satelliti e sono stati eseguiti dei trapianti secondari. Il potenziale miogenico delle cellule AFS è stato valutato anche con trapianto dopo espansione in vitro. Risultati: Il numero medio di cellule AFS presenti nel liquido amniotico varia nel corso della gestazione murina; all’età di 12.5 giorni queste cellule sono circa l’1% del totale ed esprimono marcatori ematopoietici (CD45, CD34, SCA1), marcatori mesenchimali (CD90, CD105) unitamente a Flk1, CD31 e CD44. L’analisi di espressione genica ha dimostrato che le cellule AFS esprimono a bassi livelli Oct4 e Sox2 e alti livelli di c-Myc e Klf4, mentre, nonostante la composizione mista di questa popolazione, non è stata rilevata espressione di marcatori o fattori di trascrizione tipici dei precursori muscolari. I topi HSA-Cre, SmnF7/F7 mediamente muoiono all'età di 10 mesi e durante il corso della loro vita mostrano evidenti complicazioni cliniche come una pronunciata cifosi e atrofia a livello muscolare. Dopo il trapianto con cellule AFS GFP+ o con cellule del midollo osseo, il tasso di sopravvivenza di questi animali aumenta rispettivamente del 75% e 50%. Gli animali trattati con cellule AFS hanno recuperato più del 75% della forza rispetto agli animali non trattati. Un mese dopo il trapianto, i muscoli di topi trattati con cellule AFS presentano il 37% di fibre GFP+, un numero molto basso di miofibre rigeneranti (< 1%) ed una normale espressione di distrofina. Quindici mesi dopo il trapianto, gli animali trattati con cellule del midollo osseo mostrano un elevato numero di fibre centro nucleate, un’importante infiltrazione di tessuto interstiziale e nessuna miofibra GFP+, mentre i topi trattati con cellule AFS hanno un fenotipo molto simile a quello di topi sani della stessa età, e il 58% delle miofibre è GFP+. Risultati simili sono stati ottenuti trattando lo stesso modello animale con cellule AFS dopo espansione in cultura. Discussione: Le cellule AFS isolate dal liquido amniotico di topo sono una popolazione eterogenea; queste cellule esprimono marcatori mesenchimali, ematopoietici e marcatori endoteliali. Va evidenziato che, nonostante la composizione mista di questa popolazione staminale, non esistono precursori muscolari al suo interno, e quindi qualunque differenziamento in senso muscolare di queste cellule è dovuto ad una differenziazione delle cellule AFS e non ad una maturazione di cellule già pre-commited. Quando vengono iniettate in un modello di atrofia muscolare, le cellule AFS mostrano un grande potenziale miogenico, anche a lungo termine, dimostrandosi una interessante fonte cellulare per scopi terapeutici. Queste cellule infatti sono state in grado di differenziare in cellule satelliti localizzandosi nella nicchia delle cellule staminali muscolari ed esprimendo Pax7, a7integrina e SM/c-2.6, tutti marcatori esclusivi delle cellule satelliti. Inoltre, le cellule AFS possono contribuire alla formazione di nuove miofibre anche dopo espansione in cultura, aumentando così lo spettro di possibili applicazioni terapeutiche.

Mouse amniotic fluid stem cells are able to differentiate into satellite cells replenishing the depauperated muscle stem cell niche / Piccoli, Martina. - (2013 Jan 27).

Mouse amniotic fluid stem cells are able to differentiate into satellite cells replenishing the depauperated muscle stem cell niche

Piccoli, Martina
2013

Abstract

Introduzione: Negli ultimi anni lo studio delle cellule staminali ha suscitato molto interesse, sia per il grande potenziale di queste cellule nelle terapie e applicazioni cliniche, sia come modello di studio in vitro per diversi tipi di malattie. In particolare, le cellule staminali embrionali hanno una elevata capacità proliferativa e di differenziazione, ma il loro utilizzo è ancora associato a problematiche etiche. Anche le cellule staminali adulte possiedono grandi potenzialità differenziative sia in vitro che in vivo, tuttavia il loro utilizzo è limitato in quanto difficili da isolare ed espandere, soprattutto in ambito clinico. In questo scenario sarebbe vantaggioso poter ottenere una popolazione di cellule con elevata capacità di proliferazione e differenziazione, senza dover affrontare però problemi di tipo etico. Nel 2007 il nostro gruppo ha isolato una popolazione di cellule staminali dal liquido amniotico (cellule AFS), utilizzando come marcatore il recettore c-Kit. Queste cellule hanno capacità clonogenica e possono essere dirette a differenziare in una vasta gamma di tipi cellulari appartenenti a tutti e tre i foglietti germinativi. Obiettivo: Questo lavoro mira a caratterizzare il potenziale miogenico delle cellule staminali del liquido amniotico di topo utilizzando un modello murino di atrofia spinale muscolare. In particolare è volto ad analizzare la capacità delle cellule AFS di dare origine a cellule staminali muscolari e colonizzare la nicchia staminale del muscolo scheletrico. Materiali e Metodi: Le cellule AFS sono state ottenute mediante amniocentesi e selezionate per la positività al marcatore c-kit con metodo immmunomagnetico. Appena isolate le cellule AFS sono state analizzate per l'espressione di diversi marcatori (CD90, CD45, CD44, CD34, CD31, Flk1, SCA1, CD105) tramite citometria a flusso; inoltre, attraverso qRT-PCR è stata analizzata l'espressione di Oct4, Sox2, c-Myc, Klf4 e Sca-1 delle cellule AFS isolate a diversi stadi embrionali. Per la terapia di topi transgenici HSA-Cre, SmnF7/F7, le cellule AFS GFP+ sono state iniettate per via sistemica attraverso la vena caudale; gli animali sono stati poi sacrificati a uno e a quindici mesi dopo il trapianto. Sono stati osservati e analizzati alcuni parametri clinici per valutare l’effetto del trapianto cellulare. Diversi muscoli sono stati raccolti ed analizzati con ematossilina e eosina, tricromica di Masson e mediante immunofluorescenza con anticorpi anti-GFP e anti-distrofina. Per dimostrare la capacità delle cellule AFS di colonizzare la nicchia staminale del muscolo, sono state eseguite delle immunofluorescenze per i marcatori specifici delle cellule satelliti e sono stati eseguiti dei trapianti secondari. Il potenziale miogenico delle cellule AFS è stato valutato anche con trapianto dopo espansione in vitro. Risultati: Il numero medio di cellule AFS presenti nel liquido amniotico varia nel corso della gestazione murina; all’età di 12.5 giorni queste cellule sono circa l’1% del totale ed esprimono marcatori ematopoietici (CD45, CD34, SCA1), marcatori mesenchimali (CD90, CD105) unitamente a Flk1, CD31 e CD44. L’analisi di espressione genica ha dimostrato che le cellule AFS esprimono a bassi livelli Oct4 e Sox2 e alti livelli di c-Myc e Klf4, mentre, nonostante la composizione mista di questa popolazione, non è stata rilevata espressione di marcatori o fattori di trascrizione tipici dei precursori muscolari. I topi HSA-Cre, SmnF7/F7 mediamente muoiono all'età di 10 mesi e durante il corso della loro vita mostrano evidenti complicazioni cliniche come una pronunciata cifosi e atrofia a livello muscolare. Dopo il trapianto con cellule AFS GFP+ o con cellule del midollo osseo, il tasso di sopravvivenza di questi animali aumenta rispettivamente del 75% e 50%. Gli animali trattati con cellule AFS hanno recuperato più del 75% della forza rispetto agli animali non trattati. Un mese dopo il trapianto, i muscoli di topi trattati con cellule AFS presentano il 37% di fibre GFP+, un numero molto basso di miofibre rigeneranti (< 1%) ed una normale espressione di distrofina. Quindici mesi dopo il trapianto, gli animali trattati con cellule del midollo osseo mostrano un elevato numero di fibre centro nucleate, un’importante infiltrazione di tessuto interstiziale e nessuna miofibra GFP+, mentre i topi trattati con cellule AFS hanno un fenotipo molto simile a quello di topi sani della stessa età, e il 58% delle miofibre è GFP+. Risultati simili sono stati ottenuti trattando lo stesso modello animale con cellule AFS dopo espansione in cultura. Discussione: Le cellule AFS isolate dal liquido amniotico di topo sono una popolazione eterogenea; queste cellule esprimono marcatori mesenchimali, ematopoietici e marcatori endoteliali. Va evidenziato che, nonostante la composizione mista di questa popolazione staminale, non esistono precursori muscolari al suo interno, e quindi qualunque differenziamento in senso muscolare di queste cellule è dovuto ad una differenziazione delle cellule AFS e non ad una maturazione di cellule già pre-commited. Quando vengono iniettate in un modello di atrofia muscolare, le cellule AFS mostrano un grande potenziale miogenico, anche a lungo termine, dimostrandosi una interessante fonte cellulare per scopi terapeutici. Queste cellule infatti sono state in grado di differenziare in cellule satelliti localizzandosi nella nicchia delle cellule staminali muscolari ed esprimendo Pax7, a7integrina e SM/c-2.6, tutti marcatori esclusivi delle cellule satelliti. Inoltre, le cellule AFS possono contribuire alla formazione di nuove miofibre anche dopo espansione in cultura, aumentando così lo spettro di possibili applicazioni terapeutiche.
27-gen-2013
Introduction: Stem cell biology has received much interest because of its potential in both therapeutic application and in vitro modeling of diseases. In particular embryonic stem cells have good proliferative and differentiative abilities, but their use is still associated to ethical concerns and problems related to their teratogenic potential. Adult stem cells have also been described to be pluripotent both in vitro and in vivo. However, their use is limited because they are difficult to isolate and expand, particularly in a clinical setting. In this scenario, it would be advantageous to obtain a cell population with high selfrenewal and differentiation capacities, without ethical problems. In 2007 our group described that amniotic fluid stem (AFS) cells could be derived selecting amniocytes using c-Kit antibody. AFS cells have clonogenic capability and can be directed into a wide range of cell types representing the three primary embryonic lineages. Aim: This work aiming at characterize the myogenic potential of mouse AFS cells using a mouse model of spinal muscular atrophy and in particular at analyzing their ability to differentiate into satellite cells and colonize the muscle stem cell niche. Materials and Methods: Mouse AFS cells were obtained by amniocentesis and selected for the marker c-Kit with immunomagnetic beads. Freshly isolated AFS cells were analyzed for the expression of different markers (CD90, CD45, CD44, CD34, CD31, Flk1, SCA1, CD105) by flow cytometry and the expression of Oct4, Sox2, c-Myc, Klf4 and Sca-1 by qRT-PCR at different embryonic stages. For the treatment of HSA-Cre, SmnF7/F7 mutant mice, GFP+ AFS cells were injected via the tail vein and animals were sacrificed one and fifteen months after transplantation. Clinical aspects were observed and analyzed after transplantation to evaluate AFS cells’ effects. Several muscles were stained with hematoxylin and eosin, Masson’s trichrome and analyzed by immunofluorescence with anti-GFP and anti-dystrophin antibodies. To demonstrate the ability of AFS cells to replenish the muscle niche, staining for satellite cell markers and secondary transplantation were performed. The myogenic potential of AFS cells was also evaluated with transplantation after in vitro expansion. Results: Mouse AFS cell number changes during the course of gestation. At E12.5 these cells express hematopoietic markers (CD45, CD34, SCA1), mesenchymal markers (CD90, CD105) together with Flk1, CD31 and CD44. Gene expression analysis showed that mouse AFS cells express at low levels Oct4 and Sox2 and at high levels c-Myc and Klf4, whereas they are negative for the expression of myogenic genes. Mild muscular mutant HSA-Cre, SmnF7/F7 mice die at the age of 10 months and show evident clinical complications such as kyphosis and muscle shrinkage. After transplantation with GFP+ AFS or bone marrow (BM) cells mice survival rate increased by 75% and 50% respectively. Animals treated with AFS cells recovered more than 75% of force compared to the untreated. One month after transplantation, muscles obtained from AFS-treated mice displayed 37% of GFP+ fibers, with very low number of regenerating myofibers (<1%) and normal dystrophin expression. Fifteen months after transplantation BM-treated mice displayed a high number of central nucleated fibers and consistent infiltration of interstitial tissue and no GFP+ myofibers, while AFS-treated mice had a normalized phenotype, close to the same age WT mice, and 58% of the myofibers were GFP+. Similar results were obtained with transplantation of mouse AFS cells expanded in culture. Discussion: Mouse AFS cells are a heterogeneous population, and their phenotype changes during the course of gestation. At E12.5 they express mesenchymal, hematopoietic and endothelial markers, but most importantly don not express myogenic factors, indicating that no myogenic progenitor cells are present in this stem cell population. When injected in a muscular mutant mouse model, AFS cells showed a myogenic potential, even after long-term transplantation, suggesting an interesting therapeutic potential. They indeed were able to differentiate into satellite cells localizing in the muscle stem cell niche and expressing Pax7, a7integrin and SM/c-2.6, exclusively markers of satellite cell population. Moreover, AFS cells could contribute to the formation of new myofibers even after in vitro expansion.
cellule staminali, liquido amniotico, atrofia spinale muscolare Stem cells, amniotic fluid, spinal muscular atrophy
Mouse amniotic fluid stem cells are able to differentiate into satellite cells replenishing the depauperated muscle stem cell niche / Piccoli, Martina. - (2013 Jan 27).
File in questo prodotto:
File Dimensione Formato  
Tesi_Martina_Piccoli.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Non specificato
Dimensione 2.12 MB
Formato Adobe PDF
2.12 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3423564
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact