Cell death and bystander effect are crucial for both the efficacy of cancer therapy and the modulation of anti-tumour immune response. The ‘bystander effect’ refers to a process whereby untreated cells exhibit either the deleterious or beneficial indirect effects as a result of signals received from nearby targeted cells. Various molecular players and pathways have been suggested to mediate the bystander effects, nevertheless to date it is not known which are the key molecules and cellular mechanisms underpinning cell death signal propagation. Several reports suggest the involvement of both nitric oxide (NO) and reactive nitrogen species (RNS) in mediating the bystander effect. Nevertheless their role in the process has not been totally defined since these molecules can either inhibit or sustain tumour progression. Additionally, the methods conventionally applied for NO tracking do neither necessarily reflect real-time NO production nor allow studies into intact three-dimensional tumour mass. The primary aim of this study was to investigate and characterize cell signals responsible for the bystander effect within the tumour microenvironment, paying particular attention to NO. To this purpose, we exploited intravital microscopy by taking advantage of the novel fluorecent probe for NO (CuFL) and the dorsal skinfold chamber model on living tumour-bearing mice subjected to photodynamic therapy (PDT). Notably, the PDT-triggered bystander effect was associated to the generation of very fast NO and Ca2+ waves within the whole tumour mass, supported the hypothesis that constitutive NOS activity might be crucial for the beneficial spread of bystander response and death signals propagation. Additionally, we demonstrated that PDT triggered apoptosis in bystander cells, through gap junction intercellular communication. Finally, our results, provide the first direct evidence of NO involvement in bystander responses within a three-dimensional tumour mass, and strikingly corroborate the notion that connexin gap junction are instrumental for mediating bystander death signals propagation.

La morte cellulare e l’effetto bystander rappresentano degli elementi decisivi per l’efficacia della terapia antitumorale nonchè per la modulazione della risposta immunitaria contro il cancro. Per “effetto bystander” si intende il processo per il quale le cellule non soggette a determinati trattamenti farmacologici subiscono indirettamente gli effetti terapeutici, siano essi positivi o negativi, risultanti dal trattamento esclusivo delle cellule vicine. Nonostante siano state proposte diverse molecole e vie di segnalazione coinvolte nell’effetto bystander, i messaggeri molecolari essenziali ed i meccanismi che sottendono alla propagazione dei segnali di morte non sono ancora noti. Diversi studi suggeriscono un coinvolgimento dell’ossido nitrico (NO) e delle specie reattive dell’azoto (RNS) nell’effetto bystander tuttavia, il loro ruolo nel processo non è tuttora totalmente chiaro, considerato che essi possono sia inibire che sostenere la progressione del tumore. Inoltre, i metodi tradizionalmente usati per lo studio dell’ossido nitrico non riflettono necessariamente la produzione di NO in tempo reale nè consentono studi su complesse masse tumorali tridimensionali. L’obiettivo principale di questo studio è stato quello di individuare e caratterizzare i segnali cellulari responsabili dell’effetto bystander all’interno del microambiente tumorale, rivolgendo particolare attenzione all’NO. A questo scopo, abbiamo utilizzato delle tecniche di microscopia intravitale, avvalendoci di una nuova sonda fluorescente per l’NO (CuFL) e del modello sperimentale delle camerette dorsali impiantate su topi affetti da tumore e sottoposti a terapia fotodinamica (PDT). Da questo studio è emerso che l’effetto bystander indotto dalla terapia fotodinamica è associato alla generazione all’interno della massa neoplastica di onde molto rapide di segnali di NO e di Ca2+. Questi eventi avallano l’ipotesi che l’attività delle isoforme costitutive dell’enzima NOS possa esercitare un ruolo cruciale nella diffusione delle risposte bystander e nella trasmissione dei segnali di morte. Questo lavoro inoltre ci ha consentito di dimostrare che la terapia fotodinamica è in grado di indurre l’apoptosi delle cellule vicine non trattate (bystander) attraverso i meccanismi di comunicazione intercellulare mediati dalle giunzioni comunicanti. Infine, i risultati ottenuti hanno fornito la prima evidenza diretta della partecipazione dell’NO all’effetto bystander all’interno di una massa tumorale tridimensionale e corroborano efficacemente l’ipotesi che le giunzioni comunicanti formate da connesine siano essenziali per garantire la propagazione dei segnali di morte osservati nell’effetto bystander.

Cellular communication and cancer therapy: targeting Ca2+and NO signalling within the tumour microenvironment / Calì, Bianca. - (2014 Jan 30).

Cellular communication and cancer therapy: targeting Ca2+and NO signalling within the tumour microenvironment

Calì, Bianca
2014

Abstract

La morte cellulare e l’effetto bystander rappresentano degli elementi decisivi per l’efficacia della terapia antitumorale nonchè per la modulazione della risposta immunitaria contro il cancro. Per “effetto bystander” si intende il processo per il quale le cellule non soggette a determinati trattamenti farmacologici subiscono indirettamente gli effetti terapeutici, siano essi positivi o negativi, risultanti dal trattamento esclusivo delle cellule vicine. Nonostante siano state proposte diverse molecole e vie di segnalazione coinvolte nell’effetto bystander, i messaggeri molecolari essenziali ed i meccanismi che sottendono alla propagazione dei segnali di morte non sono ancora noti. Diversi studi suggeriscono un coinvolgimento dell’ossido nitrico (NO) e delle specie reattive dell’azoto (RNS) nell’effetto bystander tuttavia, il loro ruolo nel processo non è tuttora totalmente chiaro, considerato che essi possono sia inibire che sostenere la progressione del tumore. Inoltre, i metodi tradizionalmente usati per lo studio dell’ossido nitrico non riflettono necessariamente la produzione di NO in tempo reale nè consentono studi su complesse masse tumorali tridimensionali. L’obiettivo principale di questo studio è stato quello di individuare e caratterizzare i segnali cellulari responsabili dell’effetto bystander all’interno del microambiente tumorale, rivolgendo particolare attenzione all’NO. A questo scopo, abbiamo utilizzato delle tecniche di microscopia intravitale, avvalendoci di una nuova sonda fluorescente per l’NO (CuFL) e del modello sperimentale delle camerette dorsali impiantate su topi affetti da tumore e sottoposti a terapia fotodinamica (PDT). Da questo studio è emerso che l’effetto bystander indotto dalla terapia fotodinamica è associato alla generazione all’interno della massa neoplastica di onde molto rapide di segnali di NO e di Ca2+. Questi eventi avallano l’ipotesi che l’attività delle isoforme costitutive dell’enzima NOS possa esercitare un ruolo cruciale nella diffusione delle risposte bystander e nella trasmissione dei segnali di morte. Questo lavoro inoltre ci ha consentito di dimostrare che la terapia fotodinamica è in grado di indurre l’apoptosi delle cellule vicine non trattate (bystander) attraverso i meccanismi di comunicazione intercellulare mediati dalle giunzioni comunicanti. Infine, i risultati ottenuti hanno fornito la prima evidenza diretta della partecipazione dell’NO all’effetto bystander all’interno di una massa tumorale tridimensionale e corroborano efficacemente l’ipotesi che le giunzioni comunicanti formate da connesine siano essenziali per garantire la propagazione dei segnali di morte osservati nell’effetto bystander.
30-gen-2014
Cell death and bystander effect are crucial for both the efficacy of cancer therapy and the modulation of anti-tumour immune response. The ‘bystander effect’ refers to a process whereby untreated cells exhibit either the deleterious or beneficial indirect effects as a result of signals received from nearby targeted cells. Various molecular players and pathways have been suggested to mediate the bystander effects, nevertheless to date it is not known which are the key molecules and cellular mechanisms underpinning cell death signal propagation. Several reports suggest the involvement of both nitric oxide (NO) and reactive nitrogen species (RNS) in mediating the bystander effect. Nevertheless their role in the process has not been totally defined since these molecules can either inhibit or sustain tumour progression. Additionally, the methods conventionally applied for NO tracking do neither necessarily reflect real-time NO production nor allow studies into intact three-dimensional tumour mass. The primary aim of this study was to investigate and characterize cell signals responsible for the bystander effect within the tumour microenvironment, paying particular attention to NO. To this purpose, we exploited intravital microscopy by taking advantage of the novel fluorecent probe for NO (CuFL) and the dorsal skinfold chamber model on living tumour-bearing mice subjected to photodynamic therapy (PDT). Notably, the PDT-triggered bystander effect was associated to the generation of very fast NO and Ca2+ waves within the whole tumour mass, supported the hypothesis that constitutive NOS activity might be crucial for the beneficial spread of bystander response and death signals propagation. Additionally, we demonstrated that PDT triggered apoptosis in bystander cells, through gap junction intercellular communication. Finally, our results, provide the first direct evidence of NO involvement in bystander responses within a three-dimensional tumour mass, and strikingly corroborate the notion that connexin gap junction are instrumental for mediating bystander death signals propagation.
comunicazione intercellulare/cellular communication; microambiente tumorale/ tumour microenvironment; terapia contro il cancro/cancer therapy
Cellular communication and cancer therapy: targeting Ca2+and NO signalling within the tumour microenvironment / Calì, Bianca. - (2014 Jan 30).
File in questo prodotto:
File Dimensione Formato  
Calì_Bianca_Tesi.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Non specificato
Dimensione 6.22 MB
Formato Adobe PDF
6.22 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3423745
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact