The main goal of my PhD Thesis was to investigate the nature of ULXs using their multiwave-length emission properties and to extend the treatment of the evolution of their binary systems including the effects of super-Eddington accretion. In this way we constrain the masses of the black holes and donor stars in these systems, and their accretion regime. To this end, we developed a code that enables us to constrain the properties of ULXs binaries from their position on the Color-Magnitude Diagram, from their multiwavelength SED and from additional information available on the systems (such as the age of its parent stellar population). A novelty of this present treatment is the inclusion of super-Eddington accretion, with the possibility to produce the output in the HST photometric system; the extension of the parameter space for BH and donor masses with a proper computation of the orbital angular momentum loss during super-critical accretion; the possibility to model the Multiwavelength emission of ULXs considering the effects of a Comptonzing corona covering the innermost regions of the disc.

Modelling Multiwavelength Emission of Ultra-luminous X-ray sources: theory versus observations / Ambrosi, Elena. - (2018 Nov 30).

Modelling Multiwavelength Emission of Ultra-luminous X-ray sources: theory versus observations

Ambrosi, Elena
2018

Abstract

The main goal of my PhD Thesis was to investigate the nature of ULXs using their multiwave-length emission properties and to extend the treatment of the evolution of their binary systems including the effects of super-Eddington accretion. In this way we constrain the masses of the black holes and donor stars in these systems, and their accretion regime. To this end, we developed a code that enables us to constrain the properties of ULXs binaries from their position on the Color-Magnitude Diagram, from their multiwavelength SED and from additional information available on the systems (such as the age of its parent stellar population). A novelty of this present treatment is the inclusion of super-Eddington accretion, with the possibility to produce the output in the HST photometric system; the extension of the parameter space for BH and donor masses with a proper computation of the orbital angular momentum loss during super-critical accretion; the possibility to model the Multiwavelength emission of ULXs considering the effects of a Comptonzing corona covering the innermost regions of the disc.
30-nov-2018
binaries, accretion, ultra-luminous X-ray sources, X-ray binaries, black holes, mass transfer, accretion discs
Modelling Multiwavelength Emission of Ultra-luminous X-ray sources: theory versus observations / Ambrosi, Elena. - (2018 Nov 30).
File in questo prodotto:
File Dimensione Formato  
Ambrosi_Elena_tesi.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Non specificato
Dimensione 13.65 MB
Formato Adobe PDF
13.65 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3424991
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact