Stem cell-based therapies have been proposed as promising for the maintenance, regeneration, or replacement of malfunctioning tissues, but suffer from limitations mainly due to scarce cell availability and clinical safety concern related to cell quality. Optimization of stem cell expansion process is an engineering challenge, besides a biological issue. Aim of the work presented is to develop the experimental technology and the rational insight to understand and control stem cell expansion in vitro, in terms of both average and distributed properties of the cell population produced. A rational analysis of the main phenomena involved in a cell culture was achieved, underlining the sources of stem cell heterogeneity in both conventional culture systems and stirred bioreactors. From an experimental point of view, two types of bioreactors were designed, developed, and prototyped. The first, a microliter bioreactor array, was designed based on thermoconvective mixing; this experimental setup is particularly convenient for multiparametric optimization of cell culture conditions. The second, a six-well suspension bioreactor with a working volume of 10 ml/well, was designed and fabricated for coarse process optimization or, alternatively, for small-scale stem cell production; an improved setup was developed to perform stem cell cultures under hypoxia conditions. Both devices were advantageously used to culture human cord blood-derived hematopoietic stem cells, which were then characterized according to the currently available biological assays. In order to rationally optimize the stem cell expansion process, a computational model, based on a population balance approach, was developed, that takes into account receptor and receptor-ligand complex distribution in the cell sample. The model fairly describes intrinsic intra- and inter-generational heterogeneity arising from the process of cell division. These findings could give interesting feedback to experimental design and to define the operative conditions for bioreactor cultures, in order to minimize extrinsic and intrinsic heterogeneity, and to make a step towards a clinically safe and reliable human hematopoietic stem cell expansion process.

E' stato prospettato l'impiego di cellule staminali per terapie volte al mantenimento, alla rigenerazione o alla sostituzione di tessuti malfunzionanti. Tuttavia non sono ancora state risolte alcune limitazioni legate principalmente alla scarsa disponibilità di cellule staminali e ai problemi di sicurezza clinica connessi alla qualità cellulare. L'ottimizzazione del processo di espansione cellulare è un sfida ingegneristica, oltre che biologica. Scopo di questa tesi è lo sviluppo di una tecnologia sperimentale e di un quadro razionale che consenta di comprendere e controllare l'espansione di cellule staminali in vitro, sia considerando le proprietà medie che la loro distribuzione nella popolazione cellulare prodotta. E' stata realizzata un'analisi razionale dei principali fenomeni coinvolti nella coltura cellulare, ponendo in evidenza le fonti di eterogeneità sia nei sistemi di coltura convenzionali che nei bioreattori mescolati. Da un punto di vista sperimentale, sono stati progettati e sviluppati due tipi di bioreattori fino a realizzarne dei prototipi. Il primo, un sistema di bioreattori di volume dell'ordine dei microlitri, è stato progettato basato su un meccanismo di termoconvezione; questo apparato sperimentale è particolarmente adatto per un'ottimizzazione multiparametrica delle condizioni di coltura. Il secondo, un bioreattore in sospensione multipozzetto con un volume operativo di 10 ml/pozzetto, è stato pensato e costruito per un'ottimizzazione di processo meno dettagliata o, alternativamente, per una produzione su piccola scala di cellule staminali; una versione più avanzata è stata sviluppata per effettuare colture di cellule staminali in condizioni di ipossia. Entrambi i dispositivi sono stati vantaggiosamente utilizzati per coltivare cellule staminali ematopoietiche, ricavate da cordone ombelicale umano, che sono poi state caratterizzate secondo i metodi di analisi biologica convenzionali. Per ottimizzare razionalmente il processo di espansione delle cellule staminali, è stato sviluppato un modello computazionale, basato su un bilancio di popolazione, che tiene conto della distribuzione di recettori e di complessi recettore-ligando nel campione cellulare. Il modello descrive ragionevolmente l'eterogeneità intrinseca, intra- e intergenerazionale, derivante dal processo di divisione cellulare. Questi risultati possono dare un riscontro positivo in fase di progettazione degli esperimenti e di definizione delle condizioni operative a cui effettuare colture in bioreattore, al fine di minimizzare l'eterogeneità estrinseca e intrinseca della popolazione cellulare e di effettuare un ulteriore avanzamento verso un processo di espansione di cellule staminali umane clinicamente sicuro ed affidabile.

Development of cell culture technology for the expansion of homogeneous populations of human stem cells / Luni, Camilla. - (2009 Feb 02).

Development of cell culture technology for the expansion of homogeneous populations of human stem cells

Luni, Camilla
2009

Abstract

E' stato prospettato l'impiego di cellule staminali per terapie volte al mantenimento, alla rigenerazione o alla sostituzione di tessuti malfunzionanti. Tuttavia non sono ancora state risolte alcune limitazioni legate principalmente alla scarsa disponibilità di cellule staminali e ai problemi di sicurezza clinica connessi alla qualità cellulare. L'ottimizzazione del processo di espansione cellulare è un sfida ingegneristica, oltre che biologica. Scopo di questa tesi è lo sviluppo di una tecnologia sperimentale e di un quadro razionale che consenta di comprendere e controllare l'espansione di cellule staminali in vitro, sia considerando le proprietà medie che la loro distribuzione nella popolazione cellulare prodotta. E' stata realizzata un'analisi razionale dei principali fenomeni coinvolti nella coltura cellulare, ponendo in evidenza le fonti di eterogeneità sia nei sistemi di coltura convenzionali che nei bioreattori mescolati. Da un punto di vista sperimentale, sono stati progettati e sviluppati due tipi di bioreattori fino a realizzarne dei prototipi. Il primo, un sistema di bioreattori di volume dell'ordine dei microlitri, è stato progettato basato su un meccanismo di termoconvezione; questo apparato sperimentale è particolarmente adatto per un'ottimizzazione multiparametrica delle condizioni di coltura. Il secondo, un bioreattore in sospensione multipozzetto con un volume operativo di 10 ml/pozzetto, è stato pensato e costruito per un'ottimizzazione di processo meno dettagliata o, alternativamente, per una produzione su piccola scala di cellule staminali; una versione più avanzata è stata sviluppata per effettuare colture di cellule staminali in condizioni di ipossia. Entrambi i dispositivi sono stati vantaggiosamente utilizzati per coltivare cellule staminali ematopoietiche, ricavate da cordone ombelicale umano, che sono poi state caratterizzate secondo i metodi di analisi biologica convenzionali. Per ottimizzare razionalmente il processo di espansione delle cellule staminali, è stato sviluppato un modello computazionale, basato su un bilancio di popolazione, che tiene conto della distribuzione di recettori e di complessi recettore-ligando nel campione cellulare. Il modello descrive ragionevolmente l'eterogeneità intrinseca, intra- e intergenerazionale, derivante dal processo di divisione cellulare. Questi risultati possono dare un riscontro positivo in fase di progettazione degli esperimenti e di definizione delle condizioni operative a cui effettuare colture in bioreattore, al fine di minimizzare l'eterogeneità estrinseca e intrinseca della popolazione cellulare e di effettuare un ulteriore avanzamento verso un processo di espansione di cellule staminali umane clinicamente sicuro ed affidabile.
2-feb-2009
Stem cell-based therapies have been proposed as promising for the maintenance, regeneration, or replacement of malfunctioning tissues, but suffer from limitations mainly due to scarce cell availability and clinical safety concern related to cell quality. Optimization of stem cell expansion process is an engineering challenge, besides a biological issue. Aim of the work presented is to develop the experimental technology and the rational insight to understand and control stem cell expansion in vitro, in terms of both average and distributed properties of the cell population produced. A rational analysis of the main phenomena involved in a cell culture was achieved, underlining the sources of stem cell heterogeneity in both conventional culture systems and stirred bioreactors. From an experimental point of view, two types of bioreactors were designed, developed, and prototyped. The first, a microliter bioreactor array, was designed based on thermoconvective mixing; this experimental setup is particularly convenient for multiparametric optimization of cell culture conditions. The second, a six-well suspension bioreactor with a working volume of 10 ml/well, was designed and fabricated for coarse process optimization or, alternatively, for small-scale stem cell production; an improved setup was developed to perform stem cell cultures under hypoxia conditions. Both devices were advantageously used to culture human cord blood-derived hematopoietic stem cells, which were then characterized according to the currently available biological assays. In order to rationally optimize the stem cell expansion process, a computational model, based on a population balance approach, was developed, that takes into account receptor and receptor-ligand complex distribution in the cell sample. The model fairly describes intrinsic intra- and inter-generational heterogeneity arising from the process of cell division. These findings could give interesting feedback to experimental design and to define the operative conditions for bioreactor cultures, in order to minimize extrinsic and intrinsic heterogeneity, and to make a step towards a clinically safe and reliable human hematopoietic stem cell expansion process.
heterogeneity, hematopoietic stem cell, bioreactor, expansion, computational model
Development of cell culture technology for the expansion of homogeneous populations of human stem cells / Luni, Camilla. - (2009 Feb 02).
File in questo prodotto:
File Dimensione Formato  
Luni.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Non specificato
Dimensione 4.3 MB
Formato Adobe PDF
4.3 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3426474
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact