Protein S (PS) is a vitamin K dependent plasma glycoprotein with multiple functions in coagulation, inflammation and apoptosis. The molecular weight of PS is approximately 70 kDa and its concentration in plasma is about 25 mg/L. In human plasma 40% of PS circulates as free form and the remaining 60% is complexes with complement C4b-binding protein, a component of the complement system. PS circulating in plasma is mainly derived from liver synthesis but, in addition, endothelial cells, testicular Leydig cells and a megakaryocytic cell line (MEG 01) can synthesize PS. Platelet contain PS, but whether this is derived from megakaryocytic synthesis or from uptake of plasma PS by megakaryocyte (Mk) is not known. Free PS acts as a cofactor for activated protein C (APC) in the inactivation of procoagulant factors Va and VIIIa. However, PS also has APC-independent anticoagulant functions, probably through direct inhibition of both the prothrombinase and the tenase complexes. It is hypothesized that intra-platelets PS, release upon platelets stimulation, plays a crucial role in regulating thrombin generation and therefore controlling procoagulant activity. PS deficiency is inherited as an autosomal dominant disordered and is classified in three types: I) reduced plasma levels of total and free PS antigen (PSAg); II) normal concentration of total and free PSAg but with low PS activity; III) low free PSAg; and normal total PSAg. Inherited PS deficiency is generally associated with increased risk of deep venous thrombosis, pulmonary embolism and some cases of arterial thrombosis. The risk of venous thrombosis in PS deficiency increased if 2 associated with other genetic or acquired conditions these includes factor V (FV) Leiden, HR2 aplotype of FV and prothrombin mutation. Several factors influence the concentration of plasma PS, pregnancy, oral contraceptive and oral anticoagulant therapy decreased the levels of PS. To clarify the origin of intra-platelets PS, we development an in vitro model of human megakaryocyte cell culture. Hematopoietic stem cells were isolated by the histopaque system from whole blood of healthy and PS deficiency subjects. Mononuclear cells have been grown in a serum free medium in presence of thrombopoietin (TPO) and interleuchin-3 (IL-3) to stimulate the differentiation into megakaryocytes lineage. The morphology of differentiated mononuclear cells was similar to MKs, and their positive stain with anti-CD41 antibody allowed us to conclude that these cells were indeed Mk. Mk was labeled with ??-tubulin and ?-tubulin antibodies and we observed the cytoplasmatic extensions called proplatelets and the release of platelets. In addition, through immunofluorescence techniques, we detected FV in their cytoplasm whereas protein C was not present as expected. As for PS, it was present in the cytoplasm of MKs obtained from healthy and PS deficiency individuals. Our study demonstrated the PS biosynthesis by megakaryocyte. To study the mechanisms that regulate the concentration of plasma and platelets PS we analyzed plasma and platelets PS from normal and PS deficiency subjects. PS contained in platelets have the same immunoblotting pattern respect to plasma PS. Plasma and platelet PS immunoblotting pattern demonstrated different molecular weight of PS in some deficient PS individuals as compared to normal control, suggesting different mutations in PS gene. We analyzed the presence of mutation and the presence of PS Heerlen allele. We investigated platelets PS antigen levels in type I and type III PS deficient patients. In type I subjects total and plasma free PS antigen levels were (PSAg) 62±7% and 37±12% 3 respectively. In carries of type III defect total and free PSAg levels were 85±13% and 41±13% respectively. Platelets PSAg in type I and type III were 66 ±32% and 80±37%.In a subgroup of healthy individuals total, free and platelet PSAg levels were 119±17%, 110±17% and 101±30%, respectively. The results indicate that type I and III subject’s total and plasma free PSAg levels were lower than normal individuals. Intra-platelets PSAg levels in type I and type III were lower than of healthy individuals. Our analysis demonstrates a strict correlation between total and free plasma PS and Plts PS. The reduction of platelet PS mirrors the reduced levels of free and total PSAg present in carries of the defect even though PS levels in Plts appears unexpectedly higher than the free PS counterpart. Moreover, we study the interaction of anticoagulant drugs on PSAg levels on 35 patient treatments with warfarin. The levels of total and free plasma PS decreased during treatment with oral anticoagulant, since PS is a vitamin K-dependent protein. Our study demonstrated significant decreased levels of platelet PS respectively plasma free and total PS. We valuated the effect of anticoagulant drugs (warfarin) and of vitamin K on Mk cells. The Mk were treatment with 1?g/ml of warfarin or 1?g/ml of vitamin K and analyze synthesis of PS. We observed decreased PS synthesis on MKs with warfarin than control MKs; on the contrary, MKs cultured under vitamin K treatment increase PS synthesis.

La proteina S (PS) è una glicoproteina plasmatica, vitamina K-dipendente, con molteplici funzioni nell’ambito della coagulazione, infiammazione e apoptosi. Il suo peso molecolare è di 70 kDa e la sua concentrazione plasmatica di circa 25 mg/L. Nel plasma umano il 40% della PS circola in forma libera, mentre il restante 60% è legato alla C4b-binding-protein, una proteina del sistema del complemento. La PS circolante nel plasma viene sintetizzata principalmente nel fegato ma anche le cellule endoteliali, le cellule di Leydig e una linea cellulare di megacariociti sono in grado di sintetizzarla. Le piastrine contengono PS, anche se la sua origine non è ancora stata chiarita. Si ipotizza che derivi dalla sintesi dei megacariociti o che siano gli stessi megacariociti ad assumerla dal pool plasmatico mediante un meccanismo di endocitosi. La PS libera agisce da cofattore per la proteina C attivata (APC) nell’inattivazione dei fattori procoagulanti Va (FVa ) e VIIIa (FVIIIa). La PS esercita anche un’azione anticoagulante APC-indipendente, probabilmente inibendo direttamente i complessi tenase e protrombinase. Si suppone che la PS rilasciata dalle piastrine in seguito alla loro attivazione regoli la generazione di trombina, controllando perciò l’attività procoagulante. I difetti di PS sono a trasmissione autosomica dominante e vengono classificati in tre tipi: – difetto di tipo I, caratterizzato da ridotti livelli plasmatici di PS totale e libera; – difetto di tipo II, caratterizzato da livelli fisiologici di PS totale e libera associati ad una ridotta attività; 6 – difetto di tipo III, presenta una PS libera ridotta ed una PS totale nella norma. I difetti di PS sono generalmente associati ad un aumentato rischio di trombosi venosa profonda, embolismo polmonare ed, in qualche caso, a trombosi arteriosa. Nei deficit di PS il rischio di trombosi venosa aumenta se associato ad altre condizioni di carattere genetico o acquisito quali il FV Leiden, l’aplotipo HR2 del FV e mutazioni a carico del gene che codifica per la protrombina. Molteplici fattori, tra cui la gravidanza, la terapia anticoncezionale e anticoagulante orale, riducono la concentrazione plasmatica della PS. Al fine di chiarire l’origine della PS piastrinica, abbiamo messo a punto un modello in vitro di colture di megacariociti umani. Le cellule staminali ematopoietiche sono state isolate con histopaque da sangue intero di soggetti sani e con difetto di PS. Le cellule mononucleate sono state coltivate in un terreno privo di siero ed in presenza di trombopoietina (TPO) e interleuchina 3 (IL3) per stimolarne la differenziazione in una linea magacariocitaria. Le cellule mononucleate differenziate presentavano una morfologia simile a quella dei megacariociti e risultavano positive all’anticorpo anti-CD41; questi elementi ci hanno permesso di confermare che si trattasse effettivamente di megacariociti. Inoltre, la marcatura dei megacariociti con anticorpi anti ??-tubulina e ?-tubulina ha evidenziato sia la presenza di estensioni citoplasmatiche denominate “proplatelets” sia il rilascio di piastrine da parte dei megacariociti. In aggiunta, mediante tecniche di immunofluorescenza, abbiamo rilevato la presenza del FV a livello citoplasmatico, mentre la PC era assente. La PS era presente nel citoplasma dei megacariociti isolati da individui sani e con difetto di PS. La nostra ricerca ha così dimostrato la sintesi di PS da parte dei megacariociti. 7 Per studiare il meccanismo che regola i livelli di PS presenti nel plasma e all’interno delle piastrine, abbiamo determinato la concentrazione di PS plasmatica e piastrinica in soggetti sani e portatori di difetto di PS. La PS piastrinica mostrava lo stesso pattern elettroforetico di quella isolata dal plasma. L’analisi immunologica ha inoltre evidenziato, per alcuni soggetti portatori del difetto, una PS plasmatica con differente peso molecolare rispetto ai controlli sani; questo ci ha suggerito la presenza di mutazioni nel gene della PS. Abbiamo quindi testato la presenza di eventuali mutazioni e dell’allele Heerlen. In soggetti portatori di difetto di PS di tipo I i livelli di PS totale plasmatici, e libera erano: 62±7% e 37±12% . In soggetti portatori di difetto di PS di tipo III i livelli di PS totale e libera nel plasma erano di 85±13% e 41±13%. I livelli di PS nelle piastrine nei soggetti portatori di difetto di PS di tipo I e di tipo III erano di 66 ±32% e 80±37%. In un gruppo di persone sane i livelli di PS totale, libera e piastrinica erano di 119±17%, 110±17% e 101±30%, rispettivamente. Dall’analisi dei livelli plasmatici e piastrinici di PS in soggetti portatori del difetto di tipo I e III è emerso che a) nei pazienti con difetto i livelli di PS totale e libera erano più bassi rispetto ai soggetti sani; b) i pazienti con difetto presentavano livelli di PS piastrinica ridotti rispetto agli individui sani utilizzati come controllo. La nostra analisi ha dimostrato una stretta correlazione tra la PS plasmatica (libera e totale) e quella piastrinica. La diminuzione della concentrazione di PS piastrinica, osservata negli individui portatori del difetto, riflette l’abbassamento del livello di PS plasmatica, sebbene la quota di PS all’interno delle piastrine risulti maggiore rispetto a quella della PS presente nel plasma in forma libera. In seguito abbiamo studiato l’effetto di sostanze anticoagulanti sui livelli plasmatici e piastrinici di PS in pazienti 8 sani in trattamento con warfarina. E’ noto che la warfarina abbassa i livelli plasmatici di PS in quanto quest’ultima è una proteina vitamina Kdipendente. Anche i livelli di PS plasmatica, (totale e libera), e piastrinica dei medesimi soggetti in terapia con warfarina risultano ridotti rispetto alla norma ma l’abbassamento della concentrazione di PS appare molto più marcata all’interno delle piastrine piuttosto che nel plasma. Infine abbiamo valutato l’effetto della warfarina e della vitamina K sulla sintesi di PS da parte dei megacariociti. Mediante tecniche di immunofluorescenza abbiamo osservato una ridotta sintesi della PS nei megacariociti trattati con warfarina rispetto alle cellule di controllo; al contrario, i megacariociti coltivati in un terreno supplementato con vitamina K mostravano un incremento della sintesi di PS.

Study of the origin of platelets coagulation protein S by human megakaryocyte cultures and characterization of platelets protein S in patients with inherited protein S deficiency / Radu, Claudia Maria. - (2009 Feb 02).

Study of the origin of platelets coagulation protein S by human megakaryocyte cultures and characterization of platelets protein S in patients with inherited protein S deficiency

Radu, Claudia Maria
2009

Abstract

La proteina S (PS) è una glicoproteina plasmatica, vitamina K-dipendente, con molteplici funzioni nell’ambito della coagulazione, infiammazione e apoptosi. Il suo peso molecolare è di 70 kDa e la sua concentrazione plasmatica di circa 25 mg/L. Nel plasma umano il 40% della PS circola in forma libera, mentre il restante 60% è legato alla C4b-binding-protein, una proteina del sistema del complemento. La PS circolante nel plasma viene sintetizzata principalmente nel fegato ma anche le cellule endoteliali, le cellule di Leydig e una linea cellulare di megacariociti sono in grado di sintetizzarla. Le piastrine contengono PS, anche se la sua origine non è ancora stata chiarita. Si ipotizza che derivi dalla sintesi dei megacariociti o che siano gli stessi megacariociti ad assumerla dal pool plasmatico mediante un meccanismo di endocitosi. La PS libera agisce da cofattore per la proteina C attivata (APC) nell’inattivazione dei fattori procoagulanti Va (FVa ) e VIIIa (FVIIIa). La PS esercita anche un’azione anticoagulante APC-indipendente, probabilmente inibendo direttamente i complessi tenase e protrombinase. Si suppone che la PS rilasciata dalle piastrine in seguito alla loro attivazione regoli la generazione di trombina, controllando perciò l’attività procoagulante. I difetti di PS sono a trasmissione autosomica dominante e vengono classificati in tre tipi: – difetto di tipo I, caratterizzato da ridotti livelli plasmatici di PS totale e libera; – difetto di tipo II, caratterizzato da livelli fisiologici di PS totale e libera associati ad una ridotta attività; 6 – difetto di tipo III, presenta una PS libera ridotta ed una PS totale nella norma. I difetti di PS sono generalmente associati ad un aumentato rischio di trombosi venosa profonda, embolismo polmonare ed, in qualche caso, a trombosi arteriosa. Nei deficit di PS il rischio di trombosi venosa aumenta se associato ad altre condizioni di carattere genetico o acquisito quali il FV Leiden, l’aplotipo HR2 del FV e mutazioni a carico del gene che codifica per la protrombina. Molteplici fattori, tra cui la gravidanza, la terapia anticoncezionale e anticoagulante orale, riducono la concentrazione plasmatica della PS. Al fine di chiarire l’origine della PS piastrinica, abbiamo messo a punto un modello in vitro di colture di megacariociti umani. Le cellule staminali ematopoietiche sono state isolate con histopaque da sangue intero di soggetti sani e con difetto di PS. Le cellule mononucleate sono state coltivate in un terreno privo di siero ed in presenza di trombopoietina (TPO) e interleuchina 3 (IL3) per stimolarne la differenziazione in una linea magacariocitaria. Le cellule mononucleate differenziate presentavano una morfologia simile a quella dei megacariociti e risultavano positive all’anticorpo anti-CD41; questi elementi ci hanno permesso di confermare che si trattasse effettivamente di megacariociti. Inoltre, la marcatura dei megacariociti con anticorpi anti ??-tubulina e ?-tubulina ha evidenziato sia la presenza di estensioni citoplasmatiche denominate “proplatelets” sia il rilascio di piastrine da parte dei megacariociti. In aggiunta, mediante tecniche di immunofluorescenza, abbiamo rilevato la presenza del FV a livello citoplasmatico, mentre la PC era assente. La PS era presente nel citoplasma dei megacariociti isolati da individui sani e con difetto di PS. La nostra ricerca ha così dimostrato la sintesi di PS da parte dei megacariociti. 7 Per studiare il meccanismo che regola i livelli di PS presenti nel plasma e all’interno delle piastrine, abbiamo determinato la concentrazione di PS plasmatica e piastrinica in soggetti sani e portatori di difetto di PS. La PS piastrinica mostrava lo stesso pattern elettroforetico di quella isolata dal plasma. L’analisi immunologica ha inoltre evidenziato, per alcuni soggetti portatori del difetto, una PS plasmatica con differente peso molecolare rispetto ai controlli sani; questo ci ha suggerito la presenza di mutazioni nel gene della PS. Abbiamo quindi testato la presenza di eventuali mutazioni e dell’allele Heerlen. In soggetti portatori di difetto di PS di tipo I i livelli di PS totale plasmatici, e libera erano: 62±7% e 37±12% . In soggetti portatori di difetto di PS di tipo III i livelli di PS totale e libera nel plasma erano di 85±13% e 41±13%. I livelli di PS nelle piastrine nei soggetti portatori di difetto di PS di tipo I e di tipo III erano di 66 ±32% e 80±37%. In un gruppo di persone sane i livelli di PS totale, libera e piastrinica erano di 119±17%, 110±17% e 101±30%, rispettivamente. Dall’analisi dei livelli plasmatici e piastrinici di PS in soggetti portatori del difetto di tipo I e III è emerso che a) nei pazienti con difetto i livelli di PS totale e libera erano più bassi rispetto ai soggetti sani; b) i pazienti con difetto presentavano livelli di PS piastrinica ridotti rispetto agli individui sani utilizzati come controllo. La nostra analisi ha dimostrato una stretta correlazione tra la PS plasmatica (libera e totale) e quella piastrinica. La diminuzione della concentrazione di PS piastrinica, osservata negli individui portatori del difetto, riflette l’abbassamento del livello di PS plasmatica, sebbene la quota di PS all’interno delle piastrine risulti maggiore rispetto a quella della PS presente nel plasma in forma libera. In seguito abbiamo studiato l’effetto di sostanze anticoagulanti sui livelli plasmatici e piastrinici di PS in pazienti 8 sani in trattamento con warfarina. E’ noto che la warfarina abbassa i livelli plasmatici di PS in quanto quest’ultima è una proteina vitamina Kdipendente. Anche i livelli di PS plasmatica, (totale e libera), e piastrinica dei medesimi soggetti in terapia con warfarina risultano ridotti rispetto alla norma ma l’abbassamento della concentrazione di PS appare molto più marcata all’interno delle piastrine piuttosto che nel plasma. Infine abbiamo valutato l’effetto della warfarina e della vitamina K sulla sintesi di PS da parte dei megacariociti. Mediante tecniche di immunofluorescenza abbiamo osservato una ridotta sintesi della PS nei megacariociti trattati con warfarina rispetto alle cellule di controllo; al contrario, i megacariociti coltivati in un terreno supplementato con vitamina K mostravano un incremento della sintesi di PS.
2-feb-2009
Protein S (PS) is a vitamin K dependent plasma glycoprotein with multiple functions in coagulation, inflammation and apoptosis. The molecular weight of PS is approximately 70 kDa and its concentration in plasma is about 25 mg/L. In human plasma 40% of PS circulates as free form and the remaining 60% is complexes with complement C4b-binding protein, a component of the complement system. PS circulating in plasma is mainly derived from liver synthesis but, in addition, endothelial cells, testicular Leydig cells and a megakaryocytic cell line (MEG 01) can synthesize PS. Platelet contain PS, but whether this is derived from megakaryocytic synthesis or from uptake of plasma PS by megakaryocyte (Mk) is not known. Free PS acts as a cofactor for activated protein C (APC) in the inactivation of procoagulant factors Va and VIIIa. However, PS also has APC-independent anticoagulant functions, probably through direct inhibition of both the prothrombinase and the tenase complexes. It is hypothesized that intra-platelets PS, release upon platelets stimulation, plays a crucial role in regulating thrombin generation and therefore controlling procoagulant activity. PS deficiency is inherited as an autosomal dominant disordered and is classified in three types: I) reduced plasma levels of total and free PS antigen (PSAg); II) normal concentration of total and free PSAg but with low PS activity; III) low free PSAg; and normal total PSAg. Inherited PS deficiency is generally associated with increased risk of deep venous thrombosis, pulmonary embolism and some cases of arterial thrombosis. The risk of venous thrombosis in PS deficiency increased if 2 associated with other genetic or acquired conditions these includes factor V (FV) Leiden, HR2 aplotype of FV and prothrombin mutation. Several factors influence the concentration of plasma PS, pregnancy, oral contraceptive and oral anticoagulant therapy decreased the levels of PS. To clarify the origin of intra-platelets PS, we development an in vitro model of human megakaryocyte cell culture. Hematopoietic stem cells were isolated by the histopaque system from whole blood of healthy and PS deficiency subjects. Mononuclear cells have been grown in a serum free medium in presence of thrombopoietin (TPO) and interleuchin-3 (IL-3) to stimulate the differentiation into megakaryocytes lineage. The morphology of differentiated mononuclear cells was similar to MKs, and their positive stain with anti-CD41 antibody allowed us to conclude that these cells were indeed Mk. Mk was labeled with ??-tubulin and ?-tubulin antibodies and we observed the cytoplasmatic extensions called proplatelets and the release of platelets. In addition, through immunofluorescence techniques, we detected FV in their cytoplasm whereas protein C was not present as expected. As for PS, it was present in the cytoplasm of MKs obtained from healthy and PS deficiency individuals. Our study demonstrated the PS biosynthesis by megakaryocyte. To study the mechanisms that regulate the concentration of plasma and platelets PS we analyzed plasma and platelets PS from normal and PS deficiency subjects. PS contained in platelets have the same immunoblotting pattern respect to plasma PS. Plasma and platelet PS immunoblotting pattern demonstrated different molecular weight of PS in some deficient PS individuals as compared to normal control, suggesting different mutations in PS gene. We analyzed the presence of mutation and the presence of PS Heerlen allele. We investigated platelets PS antigen levels in type I and type III PS deficient patients. In type I subjects total and plasma free PS antigen levels were (PSAg) 62±7% and 37±12% 3 respectively. In carries of type III defect total and free PSAg levels were 85±13% and 41±13% respectively. Platelets PSAg in type I and type III were 66 ±32% and 80±37%.In a subgroup of healthy individuals total, free and platelet PSAg levels were 119±17%, 110±17% and 101±30%, respectively. The results indicate that type I and III subject’s total and plasma free PSAg levels were lower than normal individuals. Intra-platelets PSAg levels in type I and type III were lower than of healthy individuals. Our analysis demonstrates a strict correlation between total and free plasma PS and Plts PS. The reduction of platelet PS mirrors the reduced levels of free and total PSAg present in carries of the defect even though PS levels in Plts appears unexpectedly higher than the free PS counterpart. Moreover, we study the interaction of anticoagulant drugs on PSAg levels on 35 patient treatments with warfarin. The levels of total and free plasma PS decreased during treatment with oral anticoagulant, since PS is a vitamin K-dependent protein. Our study demonstrated significant decreased levels of platelet PS respectively plasma free and total PS. We valuated the effect of anticoagulant drugs (warfarin) and of vitamin K on Mk cells. The Mk were treatment with 1?g/ml of warfarin or 1?g/ml of vitamin K and analyze synthesis of PS. We observed decreased PS synthesis on MKs with warfarin than control MKs; on the contrary, MKs cultured under vitamin K treatment increase PS synthesis.
Platelets; Megakaryocytes; Protein S;
Study of the origin of platelets coagulation protein S by human megakaryocyte cultures and characterization of platelets protein S in patients with inherited protein S deficiency / Radu, Claudia Maria. - (2009 Feb 02).
File in questo prodotto:
File Dimensione Formato  
RADU.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Non specificato
Dimensione 6.71 MB
Formato Adobe PDF
6.71 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3426476
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact