The problem of estimating probability densities on the unit interval whose log-functions belong to a periodic Sobolev space is studied adopting a Bayesian approach. A prior is constructed so that the posterior converges at optimal rate in the minimax sense under Hellinger loss whichever is the degree of smoothness of the log-density. Thus, the point-wise posterior expectation of the density function provides an optimal non-parametric adaptive estimation procedure.

Adaptive posterior rate of convergence for infinite-dimensional exponential families.

Scricciolo, Catia
2003

Abstract

The problem of estimating probability densities on the unit interval whose log-functions belong to a periodic Sobolev space is studied adopting a Bayesian approach. A prior is constructed so that the posterior converges at optimal rate in the minimax sense under Hellinger loss whichever is the degree of smoothness of the log-density. Thus, the point-wise posterior expectation of the density function provides an optimal non-parametric adaptive estimation procedure.
File in questo prodotto:
File Dimensione Formato  
WP_2003_25.pdf

accesso aperto

Licenza: Accesso gratuito
Dimensione 10.43 MB
Formato Adobe PDF
10.43 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3442298
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact