Consider a sampling parametric model with parameter θ = (ψ, λ), where ψ is the parameter of interest. Also in the Bayesian framework, an approach to the elimination of nuisance parameters is to use an appropriate pseudo-likelihood function LPS(ψ) for the parameter of interest only, in alternative to an integrated likelihood function. The goal of this paper is to select a class of default priors πPS(ψ) for a parameter of interest using pseudo-likelihood functions. Developing Stein’s (1985) and Tibshirani’s (1989) results, our approach is to require that the resulting pseudo-posterior intervals, based on the pseudo-posterior distribution πPS(ψ|y) / πPS(ψ)LPS(ψ), have accurate frequentist coverage. Several illustrative examples are given and comparisons of πPS(ψ|y) are made to the posterior distributions based on the reference or Jeffreys priors. Some interesting conclusions emerge.

Default priors from pseudo-likelihoods in the presence of nuisance parameter

Racugno, Walter;Ventura, Laura
2007

Abstract

Consider a sampling parametric model with parameter θ = (ψ, λ), where ψ is the parameter of interest. Also in the Bayesian framework, an approach to the elimination of nuisance parameters is to use an appropriate pseudo-likelihood function LPS(ψ) for the parameter of interest only, in alternative to an integrated likelihood function. The goal of this paper is to select a class of default priors πPS(ψ) for a parameter of interest using pseudo-likelihood functions. Developing Stein’s (1985) and Tibshirani’s (1989) results, our approach is to require that the resulting pseudo-posterior intervals, based on the pseudo-posterior distribution πPS(ψ|y) / πPS(ψ)LPS(ψ), have accurate frequentist coverage. Several illustrative examples are given and comparisons of πPS(ψ|y) are made to the posterior distributions based on the reference or Jeffreys priors. Some interesting conclusions emerge.
File in questo prodotto:
File Dimensione Formato  
2007_7_20070604124043.pdf

accesso aperto

Licenza: Non specificato
Dimensione 432.71 kB
Formato Adobe PDF
432.71 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3442406
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact