Nonlinear heteroscedastic regression models are a widely used class of models in applied statistics, with applications especially in biology, medicine or chemistry. Nonlinearity and variance heterogeneity can make likelihood estimation for a scalar parameter of interest rather inaccurate for small or moderate samples. In this paper, we suggest a new approach to point estimation based on estimating equations obtained from higher-order pivots for the parameter of interest. In particular, we take as an estimating function the modified directed likelihood. This is a higher-order pivotal quantity that can be easily computed in practice for nonlinear heteroscedastic models with normally distributed errors , using a recently developed S-PLUS library (HOA, 2000) . The estimators obtained from this procedure are a refinement of the maximum likelihood estimators, improving their small sample properties and keeping equivariance under reparameterisation. Two applications to real data sets are discussed.

Improved maximum likelihood estimation in heteroscedastic nonlinear regression models.

Ventura, Laura;Giummolè, Federica
2001

Abstract

Nonlinear heteroscedastic regression models are a widely used class of models in applied statistics, with applications especially in biology, medicine or chemistry. Nonlinearity and variance heterogeneity can make likelihood estimation for a scalar parameter of interest rather inaccurate for small or moderate samples. In this paper, we suggest a new approach to point estimation based on estimating equations obtained from higher-order pivots for the parameter of interest. In particular, we take as an estimating function the modified directed likelihood. This is a higher-order pivotal quantity that can be easily computed in practice for nonlinear heteroscedastic models with normally distributed errors , using a recently developed S-PLUS library (HOA, 2000) . The estimators obtained from this procedure are a refinement of the maximum likelihood estimators, improving their small sample properties and keeping equivariance under reparameterisation. Two applications to real data sets are discussed.
File in questo prodotto:
File Dimensione Formato  
WP_2001_15.pdf

accesso aperto

Licenza: Non specificato
Dimensione 20.66 MB
Formato Adobe PDF
20.66 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3442423
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact