As the space business is shifting from pure performances to affordability and low-cost access to orbit, a renewed interest is growing about hybrid rocket propulsion. Hybrid rocket motors are attractive for their inherent advantages like simplicity, reliability, safety and reduced costs. Some disadvantages have limited their use with respect to the consolidated solid and liquid rocket motor like low fuel regression rate and volume loading, low combustion efficiency, and possible mixture ratio shift. Besides the drawbacks just cited that already have promising solutions, hybrid rockets have the other disadvantage of the increased erosion of the thermal protection materials inside the combustion chamber due to the more chemically aggressive composition of the exhaust gases compared to the solid and liquid counterparts. Even if a large heritage comes from the materials used in solid propulsion (especially), most of them are reserved to a restricted group of players related to the military sector and the big aerospace agencies, and thus are not available to the small new companies that want to use the hybrid technology to create new products more suited for this new space market. Moreover, the erosion rates of these materials in a hybrid motor are usually higher and so further studies are needed to better understand their behavior and eventually tune their properties to better perform in this different environment. The aim of this thesis is to study several types of thermal protection materials to screen out the most performing solutions and better understand their erosion behavior. In particular, this work is focused on the study of commercially available materials in order to keep the independence from the military and big-space agencies related materials, which availability could limit the simplicity and economic affordability of hybrid rockets. An experimental campaign has been performed to study the behavior of different materials in an actual hybrid rocket motor, used especially in the nozzle region of the engine. The results of fire tests have been analyzed by using post-processing techniques like X-ray tomographies and SEM analyses on the fired components. Moreover, a dedicated numerical ablation code has been developed in order to use the temperature measures of some in depth thermocouples used in the experimental set-up to better understand the material behavior and the thermochemical conditions imposed by the combustion gases in hybrid motors. In the first chapter the concept of hybrid rocket is introduced together with the need to use commercial and economically affordable thermal protection materials. The second chapter is dedicated to a bibliographic review on the state-of-the-art thermal protection materials used in solid and liquid rocket motors. A section is dedicated to the results of the materials used in hybrid rocket motors during the history of this technology. In the third chapter, the fundamental concepts of the hybrid rocket combustion chamber will be illustrated, focusing on the aspects concerning the vortex motor configuration which is the one used for the experimental tests. The 1-kN class hybrid rocket motor and its diagnostic used in the experimental campaign are discussed in the fourth chapter, where all the tested materials used are shown as well. In particular, the materials investigated are seven grades of polycrystalline graphite, two types of carbon/phenolic composite, one type of cotton/phenolic, glass/phenolic, and silica/phenolic, some more costly materials in the form of a throat insert, in particular, Tungsten, glassy carbon, and three types of carbon/carbon. The post-processing tools are described in chapter five and six (the latter is dedicated to the numerical model). Finally, the seventh chapter is dedicated to the presentation of the experimental results, and the study and comparison of the materials performances through the results of the aforementioned post-processing tools.

Un rinnovato interesse per la propulsione a razzo ibrida sta crescendo nuovamente dalla nuova tendenza del mercato spaziale di puntare su sistemi affidabili e a basso costo piuttosto che sulle prestazioni. I motori ibridi sono appetibili grazie ai loro vantaggi quali semplicità, sicurezza, e bassi costi. Oltre agli svantaggi citati prima che comunque hanno delle promettenti, i motori ibridi hanno anche lo svantaggio di avere una erosione delle protezioni termiche più elevata rispetto ai motori solidi e liquidi data dalla composizione chimicamente più aggressiva dei suoi gas di combustione. Anche se la vi è una ampia conoscenza del comportamento di questi materiali nella propulsione solida (specialmente), la disponibilità della maggior parte di questi materiali è riservata a pochi enti legati all’ambito militare o delle grosse agenzie spaziali, e non sono quindi disponibili a tutte quelle nuove piccole aziende che vogliono sfruttare la tecnologia ibrida per creare prodotti che più si addicono al nuovo mercato spaziale. Oltretutto, l’erosione di questi materiali è più elevata se utilizzati in un motore ibrido e quindi sono necessari nuovi studi per comprenderne il comportamento ed eventualmente ottimizzare alcune loro proprietà per farli rendere meglio in un ambiente simile. Lo scopo della tesi è quello studiare diversi tipi di materiali per selezionare le soluzioni più performanti e capire meglio il loro comportamento. In particolare, questo lavoro si concentra sullo studio di materiali commercialmente disponibili in modo da poter mantenere l’indipendenza dai materiali legati all’ambiente militare e delle grandi agenzie spaziali che altrimenti avrebbero limitato la semplicità e l’economicità dei motori ibridi. E’ stata portata avanti una campagna sperimentale studiando il comportamento di questi materiali all’interno di un motore ibrido, utilizzandoli specialmente nella zona dell’ugello. I risultati dei test a fuoco sono stati analizzati con varie tecniche di post-processing come tomografie a raggi-X e analisi SEM. Oltretutto, un codice numerico dedicato è stato sviluppato in modo da poter utilizzare le misure di temperatura ottenute da alcune termocoppie messe all’interno dei materiali per capire al meglio il loro comportamento e quantificare le condizioni termochimiche date dai gas di combustione del motore ibrido. Nel primo capitolo sono introdotti i concetti generali dei motori ibridi a la necessità di usare materiali per le protezioni termiche che siano economici e disponibili sul mercato. Il secondo capitolo è dedicato alla bibliografia dei materiali allo stato dell’arte delle protezioni termiche utilizzate nei motori solidi e liquidi. Una sezione è dedicata ai risultati ottenuti da vari materiali utilizzati nei motori ibridi. Nel terzo capitolo, verranno illustrati i concetti fondamentali di come funzione la camera di combustione di un motore ibrido, ponendo particolare enfasi alla descrizione della configurazione vortex utilizzata poi nei test sperimentali. Il motore vortex e la sua sensoristica utilizzati nella campagna sperimentale sono discussi nel quarto capitolo, dove vengono anche mostrati tutti i materiali testati. In particolare, i materiali che sono stati studiati consistono in: sette tipologie di grafite isostatica, due tipologie di carbon/phenolic, una tipologia di cotton/phenolic, glass/phenolic, e silica/phenolic, alcuni materiali più costosi usati come inserto di gola quali Tungsteno, glassy carbon, e tre tipologie di carbon/carbon. Gli strumenti usati per l’analisi di post-processing sono descritti nel capitolo cinque e sei (quest’ultimo è dedicato al modello numerico). Il settimo capitolo è dedicato alla presentazione dei risultati sperimentali, e allo studio e confronto delle prestazioni dei materiali attraverso i sopracitati strumenti di post-processing.

Studio dei sistemi di protezione termica per i motori a razzo ibridi / Franco, Massimo. - (2022 Mar 30).

Studio dei sistemi di protezione termica per i motori a razzo ibridi

FRANCO, MASSIMO
2022

Abstract

As the space business is shifting from pure performances to affordability and low-cost access to orbit, a renewed interest is growing about hybrid rocket propulsion. Hybrid rocket motors are attractive for their inherent advantages like simplicity, reliability, safety and reduced costs. Some disadvantages have limited their use with respect to the consolidated solid and liquid rocket motor like low fuel regression rate and volume loading, low combustion efficiency, and possible mixture ratio shift. Besides the drawbacks just cited that already have promising solutions, hybrid rockets have the other disadvantage of the increased erosion of the thermal protection materials inside the combustion chamber due to the more chemically aggressive composition of the exhaust gases compared to the solid and liquid counterparts. Even if a large heritage comes from the materials used in solid propulsion (especially), most of them are reserved to a restricted group of players related to the military sector and the big aerospace agencies, and thus are not available to the small new companies that want to use the hybrid technology to create new products more suited for this new space market. Moreover, the erosion rates of these materials in a hybrid motor are usually higher and so further studies are needed to better understand their behavior and eventually tune their properties to better perform in this different environment. The aim of this thesis is to study several types of thermal protection materials to screen out the most performing solutions and better understand their erosion behavior. In particular, this work is focused on the study of commercially available materials in order to keep the independence from the military and big-space agencies related materials, which availability could limit the simplicity and economic affordability of hybrid rockets. An experimental campaign has been performed to study the behavior of different materials in an actual hybrid rocket motor, used especially in the nozzle region of the engine. The results of fire tests have been analyzed by using post-processing techniques like X-ray tomographies and SEM analyses on the fired components. Moreover, a dedicated numerical ablation code has been developed in order to use the temperature measures of some in depth thermocouples used in the experimental set-up to better understand the material behavior and the thermochemical conditions imposed by the combustion gases in hybrid motors. In the first chapter the concept of hybrid rocket is introduced together with the need to use commercial and economically affordable thermal protection materials. The second chapter is dedicated to a bibliographic review on the state-of-the-art thermal protection materials used in solid and liquid rocket motors. A section is dedicated to the results of the materials used in hybrid rocket motors during the history of this technology. In the third chapter, the fundamental concepts of the hybrid rocket combustion chamber will be illustrated, focusing on the aspects concerning the vortex motor configuration which is the one used for the experimental tests. The 1-kN class hybrid rocket motor and its diagnostic used in the experimental campaign are discussed in the fourth chapter, where all the tested materials used are shown as well. In particular, the materials investigated are seven grades of polycrystalline graphite, two types of carbon/phenolic composite, one type of cotton/phenolic, glass/phenolic, and silica/phenolic, some more costly materials in the form of a throat insert, in particular, Tungsten, glassy carbon, and three types of carbon/carbon. The post-processing tools are described in chapter five and six (the latter is dedicated to the numerical model). Finally, the seventh chapter is dedicated to the presentation of the experimental results, and the study and comparison of the materials performances through the results of the aforementioned post-processing tools.
Investigation of thermal protection systems for hybrid rocket motors
30-mar-2022
Un rinnovato interesse per la propulsione a razzo ibrida sta crescendo nuovamente dalla nuova tendenza del mercato spaziale di puntare su sistemi affidabili e a basso costo piuttosto che sulle prestazioni. I motori ibridi sono appetibili grazie ai loro vantaggi quali semplicità, sicurezza, e bassi costi. Oltre agli svantaggi citati prima che comunque hanno delle promettenti, i motori ibridi hanno anche lo svantaggio di avere una erosione delle protezioni termiche più elevata rispetto ai motori solidi e liquidi data dalla composizione chimicamente più aggressiva dei suoi gas di combustione. Anche se la vi è una ampia conoscenza del comportamento di questi materiali nella propulsione solida (specialmente), la disponibilità della maggior parte di questi materiali è riservata a pochi enti legati all’ambito militare o delle grosse agenzie spaziali, e non sono quindi disponibili a tutte quelle nuove piccole aziende che vogliono sfruttare la tecnologia ibrida per creare prodotti che più si addicono al nuovo mercato spaziale. Oltretutto, l’erosione di questi materiali è più elevata se utilizzati in un motore ibrido e quindi sono necessari nuovi studi per comprenderne il comportamento ed eventualmente ottimizzare alcune loro proprietà per farli rendere meglio in un ambiente simile. Lo scopo della tesi è quello studiare diversi tipi di materiali per selezionare le soluzioni più performanti e capire meglio il loro comportamento. In particolare, questo lavoro si concentra sullo studio di materiali commercialmente disponibili in modo da poter mantenere l’indipendenza dai materiali legati all’ambiente militare e delle grandi agenzie spaziali che altrimenti avrebbero limitato la semplicità e l’economicità dei motori ibridi. E’ stata portata avanti una campagna sperimentale studiando il comportamento di questi materiali all’interno di un motore ibrido, utilizzandoli specialmente nella zona dell’ugello. I risultati dei test a fuoco sono stati analizzati con varie tecniche di post-processing come tomografie a raggi-X e analisi SEM. Oltretutto, un codice numerico dedicato è stato sviluppato in modo da poter utilizzare le misure di temperatura ottenute da alcune termocoppie messe all’interno dei materiali per capire al meglio il loro comportamento e quantificare le condizioni termochimiche date dai gas di combustione del motore ibrido. Nel primo capitolo sono introdotti i concetti generali dei motori ibridi a la necessità di usare materiali per le protezioni termiche che siano economici e disponibili sul mercato. Il secondo capitolo è dedicato alla bibliografia dei materiali allo stato dell’arte delle protezioni termiche utilizzate nei motori solidi e liquidi. Una sezione è dedicata ai risultati ottenuti da vari materiali utilizzati nei motori ibridi. Nel terzo capitolo, verranno illustrati i concetti fondamentali di come funzione la camera di combustione di un motore ibrido, ponendo particolare enfasi alla descrizione della configurazione vortex utilizzata poi nei test sperimentali. Il motore vortex e la sua sensoristica utilizzati nella campagna sperimentale sono discussi nel quarto capitolo, dove vengono anche mostrati tutti i materiali testati. In particolare, i materiali che sono stati studiati consistono in: sette tipologie di grafite isostatica, due tipologie di carbon/phenolic, una tipologia di cotton/phenolic, glass/phenolic, e silica/phenolic, alcuni materiali più costosi usati come inserto di gola quali Tungsteno, glassy carbon, e tre tipologie di carbon/carbon. Gli strumenti usati per l’analisi di post-processing sono descritti nel capitolo cinque e sei (quest’ultimo è dedicato al modello numerico). Il settimo capitolo è dedicato alla presentazione dei risultati sperimentali, e allo studio e confronto delle prestazioni dei materiali attraverso i sopracitati strumenti di post-processing.
Studio dei sistemi di protezione termica per i motori a razzo ibridi / Franco, Massimo. - (2022 Mar 30).
File in questo prodotto:
File Dimensione Formato  
tesi_Massimo_Franco.pdf

embargo fino al 29/03/2025

Descrizione: tesi_Massimo_Franco
Tipologia: Tesi di dottorato
Dimensione 15.57 MB
Formato Adobe PDF
15.57 MB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3445076
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact