Calcium (Ca2+) is a key player in cardiomyocyte homeostasis, and its roles span from excitation-contraction coupling to metabolic and structural signaling. Alterations in the function or expression of Ca2+-handling proteins are common findings in failing cardiomyocytes, which have been linked to impaired contractility and detrimental remodeling of the cellular structure. For these reasons, the study of intracellular Ca2+ handling in cardiomyocytes represents a central method in experimental molecular cardiology.

Imaging intracellular Ca2+ in cardiomyocytes with genetically encoded fluorescent probes

Mongillo M.
2019

Abstract

Calcium (Ca2+) is a key player in cardiomyocyte homeostasis, and its roles span from excitation-contraction coupling to metabolic and structural signaling. Alterations in the function or expression of Ca2+-handling proteins are common findings in failing cardiomyocytes, which have been linked to impaired contractility and detrimental remodeling of the cellular structure. For these reasons, the study of intracellular Ca2+ handling in cardiomyocytes represents a central method in experimental molecular cardiology.
2019
Methods in Molecular Biology
978-1-4939-9017-7
978-1-4939-9018-4
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3445265
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact