Synapses and their highly specialized structures named dendritic spines (DS) are very plastic elements that continually reshape in response to environmental cues allowing efficient neuronal communication. Synaptic vulnerability is a common feature in multiple neurodegenerative disorders, including in Parkinson’s disease (PD). PD is characterized by the degeneration of dopaminergic neurons (DAN) in the substantia nigra pars compacta (SNpc) projecting to the striatum. The loss of striatal DAN fibers precedes the degeneration of DAN cell bodies in SNpc and synaptic failure may be an early igniter of axonal degeneration. Mutations in Leucine-rich repeat kinase 2 (LRRK2) represent the most common cause of familial PD. The most frequent mutation (G2019S) located in the kinase domain results in a protein with a gain of kinase activity, associated with increased cellular toxicity. LRRK2 has been linked to membrane remodeling and trafficking events, all key processes at the synaptic compartments. In contrast, the involvement of LRRK2 at the postsynaptic element has been only marginally explored. Of note, LRRK2 is highly expressed in medium spiny neurons (MSNs) of the dorsal striatum, rich in DS and representing the postsynaptic element of the nigrostriatal pathway. DS architecture is shaped by the actin cytoskeleton, whose remodeling is at the base of synaptic plasticity. Interestingly, LRRK2 was shown to be physically and functionally associated with cytoskeletal-related components. In this scenario, the first part of this PhD project aimed to investigate the physiological role of LRRK2 in orchestrating DS structural plasticity. Specifically, we confirmed that LRRK2 is highly expressed in striatal MSNs and we found that it mainly interacts with actin- and myosin- related proteins. We thus hypothesized that it may orchestrate postsynaptic dynamics by regulating the actin cytoskeleton. To this end, we analyzed striatal synapses of developing, mature and aged brains from Lrrk2 wildtype (WT) and knockout (KO) mice. We observed that LRRK2 influences striatal synaptic contacts number and DS maturation during the first post-natal stages. We then investigated the involvement of LRRK2 in development of new spines, exploiting brain derived neurotrophic factor (BDNF) as a model to study this process in vitro, given its well-established role in DS plasticity. After observing that LRRK2 promotes DS formation upon BDNF treatment, we investigated how its interactome is reshaped in response to stimulation. Our findings uncovered that BDNF increases the interaction of LRRK2 with proteins involved in cytoskeletal dynamics and remodeling. We further pursued the functional validation of LRRK2 interaction with drebrin, an actin binding protein highly enriched in DS. In parallel, we observed that LRRK2 phosphorylation at Ser935 is increased upon BDNF treatment, which also stimulated its relocalization with the BDNF receptor TrkB within punctate structures. Moreover, in LRRK2 KO SH-SY5Y cells the receptor accumulates in vesicular-like compartments. These lines of evidence suggest that LRRK2 responds to BDNF stimulation to regulate actin-cytoskeleton dynamics and TrkB trafficking. Second, we evaluated whether the common LRRK2 pathological mutation G2019S affects the structural plasticity of the postsynaptic compartment. We observed an increased number of branched spines in the striata of 18 month-old Lrrk2 G2019S mice (knockin and BAC overexpressors), while the number of synapses is reduced, corroborating the hypothesis that LRRK2 activity is relevant at the postsynaptic compartment, impacting on DS dynamics. Taken together, our data reveal that LRRK2 is an important regulator of DS structural plasticity. We propose that LRRK2 acts as a hub for actin cytoskeleton remodeling via interaction with actin-related proteins and receptor trafficking modulation, in agreement with its established role at the interface between vesicular and cytoskeletal pathways.

Le sinapsi e, in particolare, le spine dendritiche (SD) sono elementi capaci di rimodellarsi in risposta agli stimoli ambientali, permettendo un’efficiente comunicazione neuronale. La vulnerabilità sinaptica è stata riportata in diverse malattie neurodegenerative, fra cui quella di Parkinson (MP). Questi è caratterizzata dalla morte dei neuroni dopaminergici (ND) della substantia nigra pars compacta (SNpc) che raggiungono lo striato. La perdita delle fibre dopaminergiche nello striato precede quella dei corpi cellulari nella SNpc, suggerendo che la vulnerabilità sinaptica agisca come innesco della degenerazione assonale. Le mutazioni della proteina Leucine-rich-repeat-kinase-2 (LRRK2) rappresentano la causa più comune del Parkinson familiare. Tra queste, la più frequente (G2019S) è sita nel dominio chinasico e porta ad un’aumentata attività enzimatica associata a tossicità cellulare. In particolare, LRRK2 è implicata nel rimodellamento e nel traffico delle membrane, processi chiave nei compartimenti sinaptici. A livello post-sinaptico, tuttavia, la sua funzione rimane poco esplorata. Eppure LRRK2 è molto espressa a livello dei neuroni medi spinosi (NMS) dello striato dorsale, costituenti l’elemento post-sinaptico della via nigro-striatale. Essi possiedono molte SD, la cui morfologia dipende dal citoscheletro di actina e dal suo rimodellamento. Interessante è come LRRK2 sia associata fisicamente e funzionalmente alle componenti del citoscheletro. In questo scenario, la prima parte del progetto si è focalizzata sullo studio del ruolo fisiologico di LRRK2 nella plasticità strutturale delle SD. Nello specifico, abbiamo confermato che LRRK2 è molto espressa nei NMS e che interagisce con proteine actin-related. Abbiamo così ipotizzato che essa possa influenzare le dinamiche strutturali del citoscheletro di actina a livello post-sinaptico. L’analisi delle sinapsi striatali di topi Lrrk2 wildtype (WT) e knockout (KO) ha rivelato come la proteina influenzi il numero di contatti sinaptici e la maturazione delle SD durante i primi stadi post-natali. In seguito, sfruttando il fattore neurotrofico derivato dal cervello (BDNF), abbiamo investigato in vitro il coinvolgimento di LRRK2 nello sviluppo di nuove SD. Dopo aver osservato che LRRK2 promuove la formazione di quest’ultime in seguito a trattamento con il BDNF, abbiamo indagato come il suo interattoma venga rimodellato in risposta alla stimolazione. Tale analisi ha evidenziato un’aumentata interazione di LRRK2 con proteine coinvolte nella dinamica del citoscheletro. In particolare, abbiamo convalidato l’interazione di LRRK2 con drebrin, proteina importante nella dinamica dell’actina ed altamente arricchita nelle SD. In parallelo, abbiamo osservato che la fosforilazione di LRRK2 a livello della Ser935 aumenta dopo il trattamento con il BDNF, il quale ne stimola anche la rilocalizzazione in strutture puntiformi insieme al recettore della neurotrofina, TrKB. Inoltre, in cellule SH-SY5Y LRRK2 KO, TrKB si accumula in compartimenti vescicolari. Questi risultati suggeriscono che LRRK2 risponda al BDNF regolando la dinamica del citoscheletro di actina e il traffico del recettore TrKB. In secondo luogo, abbiamo valutato se la mutazione patologica G2019S influisca sulla plasticità strutturale della post-sinapsi. Nello striato di topi Lrrk2 G2019S di 18 mesi (knockin e BAC overexpressors), abbiamo osservato un aumento del numero di spine mature e una diminuzione del numero di sinapsi, corroborando l'ipotesi che l'attività di LRRK2 sia rilevante a livello post-sinaptico. Complessivamente, i nostri dati rivelano che LRRK2 è un importante regolatore della plasticità strutturale delle DS. Proponiamo dunque che essa sia al centro del rimodellamento del citoscheletro di actina tramite l’interazione con proteine actin-related e la modulazione del traffico recettoriale, in accordo con il suo ben noto ruolo all’interfaccia tra traffico vescicolare e citoscheletro.

Indagine sul ruolo post-sinaptico della proteina LRRK2 in condizioni fisiologiche e nella malattia di Parkinson / Tombesi, Giulia. - (2022 May 20).

Indagine sul ruolo post-sinaptico della proteina LRRK2 in condizioni fisiologiche e nella malattia di Parkinson

TOMBESI, GIULIA
2022

Abstract

Synapses and their highly specialized structures named dendritic spines (DS) are very plastic elements that continually reshape in response to environmental cues allowing efficient neuronal communication. Synaptic vulnerability is a common feature in multiple neurodegenerative disorders, including in Parkinson’s disease (PD). PD is characterized by the degeneration of dopaminergic neurons (DAN) in the substantia nigra pars compacta (SNpc) projecting to the striatum. The loss of striatal DAN fibers precedes the degeneration of DAN cell bodies in SNpc and synaptic failure may be an early igniter of axonal degeneration. Mutations in Leucine-rich repeat kinase 2 (LRRK2) represent the most common cause of familial PD. The most frequent mutation (G2019S) located in the kinase domain results in a protein with a gain of kinase activity, associated with increased cellular toxicity. LRRK2 has been linked to membrane remodeling and trafficking events, all key processes at the synaptic compartments. In contrast, the involvement of LRRK2 at the postsynaptic element has been only marginally explored. Of note, LRRK2 is highly expressed in medium spiny neurons (MSNs) of the dorsal striatum, rich in DS and representing the postsynaptic element of the nigrostriatal pathway. DS architecture is shaped by the actin cytoskeleton, whose remodeling is at the base of synaptic plasticity. Interestingly, LRRK2 was shown to be physically and functionally associated with cytoskeletal-related components. In this scenario, the first part of this PhD project aimed to investigate the physiological role of LRRK2 in orchestrating DS structural plasticity. Specifically, we confirmed that LRRK2 is highly expressed in striatal MSNs and we found that it mainly interacts with actin- and myosin- related proteins. We thus hypothesized that it may orchestrate postsynaptic dynamics by regulating the actin cytoskeleton. To this end, we analyzed striatal synapses of developing, mature and aged brains from Lrrk2 wildtype (WT) and knockout (KO) mice. We observed that LRRK2 influences striatal synaptic contacts number and DS maturation during the first post-natal stages. We then investigated the involvement of LRRK2 in development of new spines, exploiting brain derived neurotrophic factor (BDNF) as a model to study this process in vitro, given its well-established role in DS plasticity. After observing that LRRK2 promotes DS formation upon BDNF treatment, we investigated how its interactome is reshaped in response to stimulation. Our findings uncovered that BDNF increases the interaction of LRRK2 with proteins involved in cytoskeletal dynamics and remodeling. We further pursued the functional validation of LRRK2 interaction with drebrin, an actin binding protein highly enriched in DS. In parallel, we observed that LRRK2 phosphorylation at Ser935 is increased upon BDNF treatment, which also stimulated its relocalization with the BDNF receptor TrkB within punctate structures. Moreover, in LRRK2 KO SH-SY5Y cells the receptor accumulates in vesicular-like compartments. These lines of evidence suggest that LRRK2 responds to BDNF stimulation to regulate actin-cytoskeleton dynamics and TrkB trafficking. Second, we evaluated whether the common LRRK2 pathological mutation G2019S affects the structural plasticity of the postsynaptic compartment. We observed an increased number of branched spines in the striata of 18 month-old Lrrk2 G2019S mice (knockin and BAC overexpressors), while the number of synapses is reduced, corroborating the hypothesis that LRRK2 activity is relevant at the postsynaptic compartment, impacting on DS dynamics. Taken together, our data reveal that LRRK2 is an important regulator of DS structural plasticity. We propose that LRRK2 acts as a hub for actin cytoskeleton remodeling via interaction with actin-related proteins and receptor trafficking modulation, in agreement with its established role at the interface between vesicular and cytoskeletal pathways.
Unraveling the role of LRRK2 at the postsynaptic site in health and Parkinson’s disease
20-mag-2022
Le sinapsi e, in particolare, le spine dendritiche (SD) sono elementi capaci di rimodellarsi in risposta agli stimoli ambientali, permettendo un’efficiente comunicazione neuronale. La vulnerabilità sinaptica è stata riportata in diverse malattie neurodegenerative, fra cui quella di Parkinson (MP). Questi è caratterizzata dalla morte dei neuroni dopaminergici (ND) della substantia nigra pars compacta (SNpc) che raggiungono lo striato. La perdita delle fibre dopaminergiche nello striato precede quella dei corpi cellulari nella SNpc, suggerendo che la vulnerabilità sinaptica agisca come innesco della degenerazione assonale. Le mutazioni della proteina Leucine-rich-repeat-kinase-2 (LRRK2) rappresentano la causa più comune del Parkinson familiare. Tra queste, la più frequente (G2019S) è sita nel dominio chinasico e porta ad un’aumentata attività enzimatica associata a tossicità cellulare. In particolare, LRRK2 è implicata nel rimodellamento e nel traffico delle membrane, processi chiave nei compartimenti sinaptici. A livello post-sinaptico, tuttavia, la sua funzione rimane poco esplorata. Eppure LRRK2 è molto espressa a livello dei neuroni medi spinosi (NMS) dello striato dorsale, costituenti l’elemento post-sinaptico della via nigro-striatale. Essi possiedono molte SD, la cui morfologia dipende dal citoscheletro di actina e dal suo rimodellamento. Interessante è come LRRK2 sia associata fisicamente e funzionalmente alle componenti del citoscheletro. In questo scenario, la prima parte del progetto si è focalizzata sullo studio del ruolo fisiologico di LRRK2 nella plasticità strutturale delle SD. Nello specifico, abbiamo confermato che LRRK2 è molto espressa nei NMS e che interagisce con proteine actin-related. Abbiamo così ipotizzato che essa possa influenzare le dinamiche strutturali del citoscheletro di actina a livello post-sinaptico. L’analisi delle sinapsi striatali di topi Lrrk2 wildtype (WT) e knockout (KO) ha rivelato come la proteina influenzi il numero di contatti sinaptici e la maturazione delle SD durante i primi stadi post-natali. In seguito, sfruttando il fattore neurotrofico derivato dal cervello (BDNF), abbiamo investigato in vitro il coinvolgimento di LRRK2 nello sviluppo di nuove SD. Dopo aver osservato che LRRK2 promuove la formazione di quest’ultime in seguito a trattamento con il BDNF, abbiamo indagato come il suo interattoma venga rimodellato in risposta alla stimolazione. Tale analisi ha evidenziato un’aumentata interazione di LRRK2 con proteine coinvolte nella dinamica del citoscheletro. In particolare, abbiamo convalidato l’interazione di LRRK2 con drebrin, proteina importante nella dinamica dell’actina ed altamente arricchita nelle SD. In parallelo, abbiamo osservato che la fosforilazione di LRRK2 a livello della Ser935 aumenta dopo il trattamento con il BDNF, il quale ne stimola anche la rilocalizzazione in strutture puntiformi insieme al recettore della neurotrofina, TrKB. Inoltre, in cellule SH-SY5Y LRRK2 KO, TrKB si accumula in compartimenti vescicolari. Questi risultati suggeriscono che LRRK2 risponda al BDNF regolando la dinamica del citoscheletro di actina e il traffico del recettore TrKB. In secondo luogo, abbiamo valutato se la mutazione patologica G2019S influisca sulla plasticità strutturale della post-sinapsi. Nello striato di topi Lrrk2 G2019S di 18 mesi (knockin e BAC overexpressors), abbiamo osservato un aumento del numero di spine mature e una diminuzione del numero di sinapsi, corroborando l'ipotesi che l'attività di LRRK2 sia rilevante a livello post-sinaptico. Complessivamente, i nostri dati rivelano che LRRK2 è un importante regolatore della plasticità strutturale delle DS. Proponiamo dunque che essa sia al centro del rimodellamento del citoscheletro di actina tramite l’interazione con proteine actin-related e la modulazione del traffico recettoriale, in accordo con il suo ben noto ruolo all’interfaccia tra traffico vescicolare e citoscheletro.
Indagine sul ruolo post-sinaptico della proteina LRRK2 in condizioni fisiologiche e nella malattia di Parkinson / Tombesi, Giulia. - (2022 May 20).
File in questo prodotto:
File Dimensione Formato  
PhD_Thesis_Giulia_Tombesi.pdf

accesso aperto

Descrizione: Unraveling the role of LRRK2 at the postsynaptic site in health and Parkinson’s disease
Tipologia: Tesi di dottorato
Dimensione 4.84 MB
Formato Adobe PDF
4.84 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3450340
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact