Extreme Ultraviolet (EUV) multilayer (ML) technology has been intensively applied in many scientific and technological fields such as solar physics and photolithography. More recently, the advent of free electron lasers (FEL) emitting bright sub-ps pulses with very high quality in term of intensity stability, coherence and temporal shape has encouraged the usage of multilayer coatings also in the transport and manipulation of FEL radiation. In fact, conventional single layers coated mirrors provide negligible reflectance in the EUV spectral range whereas ML mirrors can reach high efficiency at normal incidence without affecting the pulses characteristics. Such optical elements have been also exploited at FERMI@ELETTRA FEL where novel multilayer coatings specifically conceived for pump and probe experiment and ultrafast absorption spectroscopy have been designed. The main results are reported.

Multilayer coatings for free electron laser sources

Corso A. J.;Zuppella P.;Bacco D.;Tessarolo E.;Nardello M.;Gerlin F.;Pelizzo M. G.
2015

Abstract

Extreme Ultraviolet (EUV) multilayer (ML) technology has been intensively applied in many scientific and technological fields such as solar physics and photolithography. More recently, the advent of free electron lasers (FEL) emitting bright sub-ps pulses with very high quality in term of intensity stability, coherence and temporal shape has encouraged the usage of multilayer coatings also in the transport and manipulation of FEL radiation. In fact, conventional single layers coated mirrors provide negligible reflectance in the EUV spectral range whereas ML mirrors can reach high efficiency at normal incidence without affecting the pulses characteristics. Such optical elements have been also exploited at FERMI@ELETTRA FEL where novel multilayer coatings specifically conceived for pump and probe experiment and ultrafast absorption spectroscopy have been designed. The main results are reported.
2015
Proceedings of SPIE - The International Society for Optical Engineering
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3457093
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact