Shaft-hole pattern fits based on the Boundary Condition design criterion allows a 100% acceptability rate, but they may be not economically convenient. If the rejection rate needs to be statistically quantified and the pattern is itself the alignment feature, therefore promoted as datum feature (Intrinsic datum system), there is no trivial solution to create a tolerance stack-up: a unique assembly function cannot be determined. The focus of this contribution is “2x” patterns: different methodologies to create tolerance stack-up assessing assemblability are discussed and verified through Monte Carlo simulation. An equation to transform the variability seen from the Intrinsic datum system to the one seen from an external arbitrary reference system is given. The mutual distance between any two elements of an “nx” pattern is discussed and the implication of multiplicity and datum system is highlighted. A case, derived from an industrial case study, will be discussed by comparing the result from the simulated manual and automated assembly. A path towards “nx” patterns generalization is also presented.

Conformity Rate Estimation for Shaft-Hole Pattern Fit Not Compliant with the Boundary Condition Design Criterion

Maltauro, Mattia
;
Meneghello, Roberto;Concheri, Gianmaria
2023

Abstract

Shaft-hole pattern fits based on the Boundary Condition design criterion allows a 100% acceptability rate, but they may be not economically convenient. If the rejection rate needs to be statistically quantified and the pattern is itself the alignment feature, therefore promoted as datum feature (Intrinsic datum system), there is no trivial solution to create a tolerance stack-up: a unique assembly function cannot be determined. The focus of this contribution is “2x” patterns: different methodologies to create tolerance stack-up assessing assemblability are discussed and verified through Monte Carlo simulation. An equation to transform the variability seen from the Intrinsic datum system to the one seen from an external arbitrary reference system is given. The mutual distance between any two elements of an “nx” pattern is discussed and the implication of multiplicity and datum system is highlighted. A case, derived from an industrial case study, will be discussed by comparing the result from the simulated manual and automated assembly. A path towards “nx” patterns generalization is also presented.
2023
Advances on Mechanics, Design Engineering and Manufacturing IV
INTERNATIONAL JOINT CONFERENCE ON MECHANICS, DESIGN ENGINEERING AND ADVANCED MANUFACTURING JCM 2022
978-3-031-15927-5
978-3-031-15928-2
File in questo prodotto:
File Dimensione Formato  
04_Manuscript_submission_130_camera_ready_2022-04-20.pdf

accesso aperto

Tipologia: Postprint (accepted version)
Licenza: Accesso libero
Dimensione 422.38 kB
Formato Adobe PDF
422.38 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3464221
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact