The IceCube Neutrino Observatory, deployed inside the deep glacial ice at the South Pole, is the largest neutrino telescope in the world. While eight years have passed since IceCube discovered a diffuse flux of high-energy astrophysical neutrinos, the sources of the vast majority of these neutrinos remain unknown. Here, we present a new search for neutrino point sources that improves the accuracy of the statistical analysis, especially in the low energy regime. We replaced the usual Gaussian approximations of IceCube’s point spread function with precise numerical representations, obtained from simulations, and combined them with new machine learning-based estimates of event energies and angular errors. Depending on the source properties, the new analysis provides improved source localization, flux characterization and thereby discovery potential (by up to 30%) over previous works. The analysis will be applied to IceCube data that has been recorded with the full 86-string detector configuration from 2011 to 2020 and includes improved detector calibration.

A New Search for Neutrino Point Sources with IceCube

Bernardini E.;Mancina S.;
2022

Abstract

The IceCube Neutrino Observatory, deployed inside the deep glacial ice at the South Pole, is the largest neutrino telescope in the world. While eight years have passed since IceCube discovered a diffuse flux of high-energy astrophysical neutrinos, the sources of the vast majority of these neutrinos remain unknown. Here, we present a new search for neutrino point sources that improves the accuracy of the statistical analysis, especially in the low energy regime. We replaced the usual Gaussian approximations of IceCube’s point spread function with precise numerical representations, obtained from simulations, and combined them with new machine learning-based estimates of event energies and angular errors. Depending on the source properties, the new analysis provides improved source localization, flux characterization and thereby discovery potential (by up to 30%) over previous works. The analysis will be applied to IceCube data that has been recorded with the full 86-string detector configuration from 2011 to 2020 and includes improved detector calibration.
2022
Proceedings of Science
File in questo prodotto:
File Dimensione Formato  
ICRC2021_1138.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3468131
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact