To fully exploit the capabilities of satellite-borne multi/hyperspectral sensors, some form of image compression is required. The Gelli-Poggi coder[1], based on segmentation and class-based transform coding, has a very competitive performance, but requires some a-priori knowledge which is not available on-board. In this paper we propose a new version of the Gelli-Poggi coder which is fully unsupervised, and therefore suited for use on-board a satellite, and presents a better performance than the original. Numerical experiments on test multispectral images validate the proposed technique.

An unsupervised segmentation-based coder for multispectral images

Cagnazzo M.
;
2005

Abstract

To fully exploit the capabilities of satellite-borne multi/hyperspectral sensors, some form of image compression is required. The Gelli-Poggi coder[1], based on segmentation and class-based transform coding, has a very competitive performance, but requires some a-priori knowledge which is not available on-board. In this paper we propose a new version of the Gelli-Poggi coder which is fully unsupervised, and therefore suited for use on-board a satellite, and presents a better performance than the original. Numerical experiments on test multispectral images validate the proposed technique.
2005
13th European Signal Processing Conference, EUSIPCO 2005
13th European Signal Processing Conference, EUSIPCO 2005
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3469805
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact